Multi-functional, multi-material magnetic components and structures for electrification

Project: EU project

Project Details

Description

Electric machines and drives, including various types of electric motors, play an ever-increasing role in the way of making Europe the first climate neutral continent in the world. In order to achieve a breakthrough in the field of energy efficient electric motors, novel approaches are needed: high performance sustainable materials and multi-material manufacturing technologies suitable for complex geometrics and capabilities to design and simulate structures and components based on those. The ambitious goal of MultiMag is to develop novel design tools, high performance materials and multi-material additive manufacturing (MM-AM) processes, hence, to manufacture ready assembled lightweight components for electric machines and leading to better performing machines, improved energy efficiency and shorter lead times. After use, the components can be dismantled, and the materials recycled effectively. MultiMag takes the full advantage of multi-material additive manufacturing. Stacked rotor and stator structures, combining dissimilar magnetic and electric insulating materials are developed, manufactured and validated to ensure mechanical, thermal, electrical and magnetic performance. Internal structures, enabling more efficient cooling, are studied and designed. Achieving ambitious objectives of MultiMag requires a holistic approach and innovations in all sectors, namely in design, materials, manufacturing, use and end-of-life. Each of these vital areas are addressed by MultiMag activities. We will develop a framework and specific toolbox for addressing complex design challenges, which are multi-material, multi-functional and multi-physics. Evaluation and development of matching material properties enabling to join dissimilar materials using AM processes is one of the key focuses of MultiMag. MultiMag approach requires also MM-AM processes to be developed further, as well as recycling of REEs.
AcronymMultiMag
StatusActive
Effective start/end date1/12/2230/11/25

Collaborative partners

  • VTT Technical Research Centre of Finland (lead)
  • RTD Talos Ltd
  • Sener Aeroespacial S.A.
  • ICPE SA
  • 3R-Cycle Oy
  • Less Common Metals Ltd.
  • Mondragon University
  • Commissariat a l'Energie Atomique et aux Energies Alternatives (CEA)
  • Elkem Silicon Product Development AS
  • University of Aalen
  • Elkem AS
  • Siemens AG
  • Stam S.r.l.

Funding category

  • Horizon Europe

Keywords

  • HORIZON-CL4-2022-RESILIENCE-01-12
  • recycling
  • multiphysics
  • additive manufacturing

Fingerprint

Explore the research topics touched on by this project. These labels are generated based on the underlying awards/grants. Together they form a unique fingerprint.