Project Details
Description
The FuelGae project aims to develop a novel model of advanced liquid fuels (ALF) production from different CO2 emissions streams of two industrial sectors (biorefinery and energy intensive industries) through a microalgae pilot plant integrated into their infrastructure. The performance of the selected microalgae strains will be improved by adapting them to each industrial case study.
The ALF production will be addressed developing different technologies: i) selective production of microalgae to obtain polysaccharides or lipids, ii) alternative microalgal biomass treatments, iii) innovative catalytic upgrading systems from biocrude., iv) online microalgae sensor. Additionally to the previously innovative technologies, FuelGae concept uses modelling techniques integrated into Process Analytical Techniques to develop a global Digital Twin (DT).
Furthermore, the C-economy of FuelGae approach will be significantly improved through hydrothermal liquefaction and, biogas processes. The biochar produced will be tested in agricultural uses creating synergies with energy and biocrude generation.
All technologies will be upscaled to TRL5 in the two case study sites; the microalgae pilot plant will be transported and validated in the two industrial sites in Romania (steel plant) and Spain (2G-bioethanol). FuelGae technologies will be further evaluated through life cycle assessment (LCA/LCC) to confirm their lower environmental impact, use of resources, or GHG emissions, and a first approach of economical sustainability. DT will be coupled with LCA-LCC to provide a global and dynamic assessment of the FuelGae concept.
FuelGae will contribute to advancing the European scientific basis and global technological leadership in the area of renewable fuels, increase their technology competitiveness and role in transforming the energy system on a fossil-free basis by 2050, in particular in the sectors like aviation and shipping, while supporting the EU goals for energy independence.
The ALF production will be addressed developing different technologies: i) selective production of microalgae to obtain polysaccharides or lipids, ii) alternative microalgal biomass treatments, iii) innovative catalytic upgrading systems from biocrude., iv) online microalgae sensor. Additionally to the previously innovative technologies, FuelGae concept uses modelling techniques integrated into Process Analytical Techniques to develop a global Digital Twin (DT).
Furthermore, the C-economy of FuelGae approach will be significantly improved through hydrothermal liquefaction and, biogas processes. The biochar produced will be tested in agricultural uses creating synergies with energy and biocrude generation.
All technologies will be upscaled to TRL5 in the two case study sites; the microalgae pilot plant will be transported and validated in the two industrial sites in Romania (steel plant) and Spain (2G-bioethanol). FuelGae technologies will be further evaluated through life cycle assessment (LCA/LCC) to confirm their lower environmental impact, use of resources, or GHG emissions, and a first approach of economical sustainability. DT will be coupled with LCA-LCC to provide a global and dynamic assessment of the FuelGae concept.
FuelGae will contribute to advancing the European scientific basis and global technological leadership in the area of renewable fuels, increase their technology competitiveness and role in transforming the energy system on a fossil-free basis by 2050, in particular in the sectors like aviation and shipping, while supporting the EU goals for energy independence.
Acronym | FuelGae |
---|---|
Status | Active |
Effective start/end date | 1/10/23 → 30/09/27 |
Collaborative partners
- VTT Technical Research Centre of Finland
- Spanish National Research Council (CSIC) (lead)
- Dynamic and Security Computations, S.L.
- Instituto Tecnológico del Embalaje, Transporte y Logística (ITENE)
- Centre for Research and Technology Hellas (CERTH)
- University of Oulu
- RTDS Association
- Inlecom Commercial Pathways Company
- ArcelorMittal Tubular Products Roman S.A.
- ️Arcelormittal Tubular Products Legutio S.A.
- Perseo Biotechnology S.L.
- HELLENiQ ENERGY Holdings S.A.
- National Technical University of Athens
UN Sustainable Development Goals
In 2015, UN member states agreed to 17 global Sustainable Development Goals (SDGs) to end poverty, protect the planet and ensure prosperity for all. This project contributes towards the following SDG(s):
Funding category
- Horizon Europe
Keywords
- microalgae
- biofuels
- PAT
- Raman spectroscopy
- Adaptive laboratory evolution
- FTIR
- Chlorella vulgaris
- CO2 emissions
- online monitoring
- Digital Twinning