A gene truncation strategy generating N- and C-terminal deletion variants of proteins for functional studies: Mapping of the Sec1p binding domain in yeast Mso1p by a Mu in vitro transposition-based approach

Eini Poussu, Jussi Jäntti, Harri Savilahti

Research output: Contribution to journalArticle

21 Citations (Scopus)


Bacteriophage Mu in vitro transposition constitutes a versatile tool in molecular biology, with applications ranging from engineering of single genes or proteins to modification of genome segments or entire genomes. A new strategy was devised on the basis of Mu transposition that via a few manipulation steps simultaneously generates a nested set of gene constructions encoding deletion variants of proteins. C-terminal deletions are produced using a mini-Mu transposon that carries translation stop signals close to each transposon end. Similarly, N-terminal deletions are generated using a transposon with appropriate restriction sites, which allows deletion of the 5′-distal part of the gene. As a proof of principle, we produced a set of plasmid constructions encoding both C- and N-terminally truncated variants of yeast Mso1p and mapped its Sec1p-interacting region. The most important amino acids for the interaction in Mso1p are located between residues T46 and N78, with some weaker interactions possibly within the region E79–N105. This general-purpose gene truncation strategy is highly efficient and produces, in a single reaction series, a comprehensive repertoire of gene constructions encoding protein deletion variants, valuable in many types of functional studies. Importantly, the methodology is applicable to any protein-encoding gene cloned in an appropriate vector.
Original languageEnglish
Article numbere104
Number of pages8
JournalNucleic Acids Research
Issue number12
Publication statusPublished - 2005
MoE publication typeA1 Journal article-refereed



  • Mu in vitro
  • transposition
  • gene cloning
  • gene expression
  • genes
  • Protein production
  • proteins

Cite this