A key to improved ion core confinement in the JET tokamak: Ion stiffness mitigation due to combined plasma rotation and low magnetic shear

P. Mantica, C. Angioni, C. Challis, G. Colyer, L. Frassinetti, N. Hawkes, T. Johnson, M. Tsalas, P.C. Devries, J. Weiland, B. Baiocchi, M. Beurskens, A. Figueiredo, C. Giroud, J. Hobirk, E. Joffrin, E. Lerche, V. Naulin, A. G. Peeters, Antti SalmiC. Sozzi, D. Strintzi, G. Staebler, Tuomas Tala, D. Van Eester, T. Versloot

Research output: Contribution to journalArticleScientificpeer-review

77 Citations (Scopus)

Abstract

New transport experiments on JET indicate that ion stiffness mitigation in the core of a rotating plasma, as described by Mantica et al. [Phys. Rev. Lett. 102, 175002 (2009)] results from the combined effect of high rotational shear and low magnetic shear. The observations have important implications for the understanding of improved ion core confinement in advanced tokamak scenarios. Simulations using quasilinear fluid and gyrofluid models show features of stiffness mitigation, while nonlinear gyrokinetic simulations do not. The JET experiments indicate that advanced tokamak scenarios in future devices will require sufficient rotational shear and the capability of q profile manipulation.
Original languageEnglish
Article number135004
Number of pages5
JournalPhysical Review Letters
Volume107
Issue number13
DOIs
Publication statusPublished - 22 Sep 2011
MoE publication typeNot Eligible

Fingerprint

stiffness
shear
rotating plasmas
ions
manipulators
simulation
fluids
profiles

Cite this

Mantica, P. ; Angioni, C. ; Challis, C. ; Colyer, G. ; Frassinetti, L. ; Hawkes, N. ; Johnson, T. ; Tsalas, M. ; Devries, P.C. ; Weiland, J. ; Baiocchi, B. ; Beurskens, M. ; Figueiredo, A. ; Giroud, C. ; Hobirk, J. ; Joffrin, E. ; Lerche, E. ; Naulin, V. ; Peeters, A. G. ; Salmi, Antti ; Sozzi, C. ; Strintzi, D. ; Staebler, G. ; Tala, Tuomas ; Van Eester, D. ; Versloot, T. / A key to improved ion core confinement in the JET tokamak : Ion stiffness mitigation due to combined plasma rotation and low magnetic shear. In: Physical Review Letters. 2011 ; Vol. 107, No. 13.
@article{51b786c6a3d74812bd270623d8e8c6c1,
title = "A key to improved ion core confinement in the JET tokamak: Ion stiffness mitigation due to combined plasma rotation and low magnetic shear",
abstract = "New transport experiments on JET indicate that ion stiffness mitigation in the core of a rotating plasma, as described by Mantica et al. [Phys. Rev. Lett. 102, 175002 (2009)] results from the combined effect of high rotational shear and low magnetic shear. The observations have important implications for the understanding of improved ion core confinement in advanced tokamak scenarios. Simulations using quasilinear fluid and gyrofluid models show features of stiffness mitigation, while nonlinear gyrokinetic simulations do not. The JET experiments indicate that advanced tokamak scenarios in future devices will require sufficient rotational shear and the capability of q profile manipulation.",
author = "P. Mantica and C. Angioni and C. Challis and G. Colyer and L. Frassinetti and N. Hawkes and T. Johnson and M. Tsalas and P.C. Devries and J. Weiland and B. Baiocchi and M. Beurskens and A. Figueiredo and C. Giroud and J. Hobirk and E. Joffrin and E. Lerche and V. Naulin and Peeters, {A. G.} and Antti Salmi and C. Sozzi and D. Strintzi and G. Staebler and Tuomas Tala and {Van Eester}, D. and T. Versloot",
year = "2011",
month = "9",
day = "22",
doi = "10.1103/PhysRevLett.107.135004",
language = "English",
volume = "107",
journal = "Physical Review Letters",
issn = "0031-9007",
publisher = "American Physical Society",
number = "13",

}

Mantica, P, Angioni, C, Challis, C, Colyer, G, Frassinetti, L, Hawkes, N, Johnson, T, Tsalas, M, Devries, PC, Weiland, J, Baiocchi, B, Beurskens, M, Figueiredo, A, Giroud, C, Hobirk, J, Joffrin, E, Lerche, E, Naulin, V, Peeters, AG, Salmi, A, Sozzi, C, Strintzi, D, Staebler, G, Tala, T, Van Eester, D & Versloot, T 2011, 'A key to improved ion core confinement in the JET tokamak: Ion stiffness mitigation due to combined plasma rotation and low magnetic shear', Physical Review Letters, vol. 107, no. 13, 135004. https://doi.org/10.1103/PhysRevLett.107.135004

A key to improved ion core confinement in the JET tokamak : Ion stiffness mitigation due to combined plasma rotation and low magnetic shear. / Mantica, P.; Angioni, C.; Challis, C.; Colyer, G.; Frassinetti, L.; Hawkes, N.; Johnson, T.; Tsalas, M.; Devries, P.C.; Weiland, J.; Baiocchi, B.; Beurskens, M.; Figueiredo, A.; Giroud, C.; Hobirk, J.; Joffrin, E.; Lerche, E.; Naulin, V.; Peeters, A. G.; Salmi, Antti; Sozzi, C.; Strintzi, D.; Staebler, G.; Tala, Tuomas; Van Eester, D.; Versloot, T.

In: Physical Review Letters, Vol. 107, No. 13, 135004, 22.09.2011.

Research output: Contribution to journalArticleScientificpeer-review

TY - JOUR

T1 - A key to improved ion core confinement in the JET tokamak

T2 - Ion stiffness mitigation due to combined plasma rotation and low magnetic shear

AU - Mantica, P.

AU - Angioni, C.

AU - Challis, C.

AU - Colyer, G.

AU - Frassinetti, L.

AU - Hawkes, N.

AU - Johnson, T.

AU - Tsalas, M.

AU - Devries, P.C.

AU - Weiland, J.

AU - Baiocchi, B.

AU - Beurskens, M.

AU - Figueiredo, A.

AU - Giroud, C.

AU - Hobirk, J.

AU - Joffrin, E.

AU - Lerche, E.

AU - Naulin, V.

AU - Peeters, A. G.

AU - Salmi, Antti

AU - Sozzi, C.

AU - Strintzi, D.

AU - Staebler, G.

AU - Tala, Tuomas

AU - Van Eester, D.

AU - Versloot, T.

PY - 2011/9/22

Y1 - 2011/9/22

N2 - New transport experiments on JET indicate that ion stiffness mitigation in the core of a rotating plasma, as described by Mantica et al. [Phys. Rev. Lett. 102, 175002 (2009)] results from the combined effect of high rotational shear and low magnetic shear. The observations have important implications for the understanding of improved ion core confinement in advanced tokamak scenarios. Simulations using quasilinear fluid and gyrofluid models show features of stiffness mitigation, while nonlinear gyrokinetic simulations do not. The JET experiments indicate that advanced tokamak scenarios in future devices will require sufficient rotational shear and the capability of q profile manipulation.

AB - New transport experiments on JET indicate that ion stiffness mitigation in the core of a rotating plasma, as described by Mantica et al. [Phys. Rev. Lett. 102, 175002 (2009)] results from the combined effect of high rotational shear and low magnetic shear. The observations have important implications for the understanding of improved ion core confinement in advanced tokamak scenarios. Simulations using quasilinear fluid and gyrofluid models show features of stiffness mitigation, while nonlinear gyrokinetic simulations do not. The JET experiments indicate that advanced tokamak scenarios in future devices will require sufficient rotational shear and the capability of q profile manipulation.

U2 - 10.1103/PhysRevLett.107.135004

DO - 10.1103/PhysRevLett.107.135004

M3 - Article

AN - SCOPUS:80053108127

VL - 107

JO - Physical Review Letters

JF - Physical Review Letters

SN - 0031-9007

IS - 13

M1 - 135004

ER -