A measurement-based statistical model to evaluate uncertainty in long-range noise assessments: Dissertation

Panu Maijala

    Research output: ThesisDissertationMonograph

    Abstract

    Carefully validated long-range sound propagation measurements with extensive meteorological instrumentation were continued for 612 days without interruption, around the clock, resulting in a database with millions of files, terabytes of sound and environmental data, and hundreds of pages of documentation. More than 100 environmental variables were analysed by statistical means, and many statistically highly significant dependencies linked to excess attenuation were found. At a distance of 3 km from the source, excess attenuation was spread over a dynamic range of 80 dB, with differences of 10 dB between individual quarters of the year; also, negative excess attenuation at frequencies below 400 Hz existed. The low frequencies were affected mainly by the stability characteristics of the atmosphere and the lapse rate. Humidity; lapse rate; sensible heat flux; and longitudinal, transverse, and vertical turbulence intensities explain excess attenuation at higher frequencies to a statistically highly significant extent. Through application of a wide range of regression analyses, a set of criteria for frequency-dependent uncertainty in sound propagation was created. These criteria were incorporated into a software module, which, together with a state-of-the-art physical sound propagation calculation module, makes it possible to perform environmental noise assessments with known uncertainty. This approach can be applied to the shortterm measurements too and it was shown that some of the most complex meteorological variables, among them atmospheric turbulence, can be taken into account. Comparison with two standardised noise modelling methods showed that the statistical model covers well a range of uncertainty notmatched with the standardisedmethods and themeasured excess attenuation fit within the limits of predicted uncertainty.
    Original languageEnglish
    QualificationDoctor Degree
    Awarding Institution
    • Tampere University of Technology (TUT)
    Supervisors/Advisors
    • Halttunen, Jouko, Supervisor, External person
    • Kuivanen, Risto, Advisor
    Award date3 Jan 2014
    Place of PublicationEspoo
    Publisher
    Print ISBNs978-951-38-8109-2
    Electronic ISBNs978-951-38-8110-8
    Publication statusPublished - 2013
    MoE publication typeG4 Doctoral dissertation (monograph)

    Keywords

    • acoustic wave propagation
    • aeroacoustics
    • atmospheric acoustics
    • environmental acoustics
    • environmental noise
    • noise assessments
    • uncertainty
    • statistical model

    Fingerprint

    Dive into the research topics of 'A measurement-based statistical model to evaluate uncertainty in long-range noise assessments: Dissertation'. Together they form a unique fingerprint.

    Cite this