A squalene synthase-like enzyme initiates production of tetraterpenoid hydrocarbons in Botryococcus braunii Race L

Hem R. Thapa, Mandar T. Naik, Shigeru Okada, Kentaro Takada, István Molnár, Yuquan Xu, Timothy P. Devarenne (Corresponding Author)

Research output: Contribution to journalArticleScientificpeer-review

36 Citations (Scopus)

Abstract

The green microalga Botryococcus braunii is considered a promising biofuel feedstock producer due to its prodigious accumulation of hydrocarbon oils that can be converted into fuels. B. braunii Race L produces the C 40 tetraterpenoid hydrocarbon lycopadiene via an uncharacterized biosynthetic pathway. Structural similarities suggest this pathway follows a biosynthetic mechanism analogous to that of C 30 squalene. Confirming this hypothesis, the current study identifies C 20 geranylgeranyl diphosphate (GGPP) as a precursor for lycopaoctaene biosynthesis, the first committed intermediate in the production of lycopadiene. Two squalene synthase (SS)-like complementary DNAs are identified in race L with one encoding a true SS and the other encoding an enzyme with lycopaoctaene synthase (LOS) activity. Interestingly, LOS uses alternative C 15 and C 20 prenyl diphosphate substrates to produce combinatorial hybrid hydrocarbons, but almost exclusively uses GGPP in vivo. This discovery highlights how SS enzyme diversification results in the production of specialized tetraterpenoid oils in race L of B. braunii.

Original languageEnglish
Article number11198
JournalNature Communications
Volume7
DOIs
Publication statusPublished - 6 Apr 2016
MoE publication typeA1 Journal article-refereed

Fingerprint

Dive into the research topics of 'A squalene synthase-like enzyme initiates production of tetraterpenoid hydrocarbons in Botryococcus braunii Race L'. Together they form a unique fingerprint.

Cite this