Adsorption of Polystyrene from Theta Condition on Cellulose and Silica Studied by Quartz Crystal Microbalance

Katri Kontturi*, Laleh Solhi, Eero Kontturi, Tekla Tammelin

*Corresponding author for this work

Research output: Contribution to journalArticleScientificpeer-review

2 Citations (Scopus)
73 Downloads (Pure)

Abstract

Adsorption of hydrophobic polymers from a nonpolar solvent medium is an underutilized tool for modification of surfaces, especially of soft matter. Adsorption of polystyrene (PS) from a theta solvent (50/50 vol % toluene/heptane) on ultrathin model films of cellulose was studied with a quartz crystal microbalance with dissipation monitoring (QCM-D), using three different PS grades with monodisperse molecular weights (Mws). Comparison of cellulose to silica as an adsorbent was presented. Adsorption on both surfaces was mainly irreversible under the studied conditions. Characteristically to polymer monolayer formation, the mass of the adsorbing polymer increased with its Mw. The initial step of the layer formation was similar on both surfaces, but silica showed a stronger tendency for the formation of a loosely bound overlayer upon molecular rearrangements as the adsorption process proceeded. Despite the slightly less extended layers formed on cellulose at increasing Mw values, the overall thickness of the adsorbing wet layers on both surfaces was of the similar order of magnitude as the radius of gyration of the adsorbate molecule. Decent degree of hydrophobization of cellulose could be reached with all studied PS grades when the time allowed for adsorption was sufficient. QCM-D, a method conventionally utilized for studying aqueous systems, turned out to be a suitable tool for studying the adsorption process of hydrophobic polymers on soft polymeric matter such as cellulose taking place in a nonpolar solvent environment.
Original languageEnglish
Pages (from-to)568–579
JournalLangmuir
Volume40
Issue number1
DOIs
Publication statusPublished - 2024
MoE publication typeA1 Journal article-refereed

Funding

The work was funded by the Research Council of Finland (project 310943).

Fingerprint

Dive into the research topics of 'Adsorption of Polystyrene from Theta Condition on Cellulose and Silica Studied by Quartz Crystal Microbalance'. Together they form a unique fingerprint.

Cite this