An expert judgment model applied to estimating the safety effect of a bicycle facility

Lars Leden, Per Gårder (Corresponding Author), Urho Pulkkinen

Research output: Contribution to journalArticleScientificpeer-review

26 Citations (Scopus)

Abstract

This paper presents a risk index model that can be used for assessing the safety effect of countermeasures. The model estimates risk in a multiplicative way, which makes it possible to analyze the impact of different factors separately. Expert judgments are incorporated through a Bayesian error model. The variance of the risk estimate is determined by Monte-Carlo simulation. The model was applied to assess the safety effect of a new design of a bicycle crossing. The intent was to gain safety by raising the crossings to reduce vehicle speeds and by making the crossings more visible by painting them in a bright color. Before the implementations, bicyclists were riding on bicycle crossings of conventional Swedish type, i.e. similar to crosswalks but delineated by white squares rather than solid lines or zebra markings. Automobile speeds were reduced as anticipated. However, it seems as if the positive effect of this was more or less canceled out by increased bicycle speeds. The safety per bicyclist was still improved by approximately 20%. This improvement was primarily caused by an increase in bicycle flow, since the data show that more bicyclists at a given location seem to benefit their safety. The increase in bicycle flow was probably caused by the new layout of the crossings since bicyclists perceived them as safer and causing less delay. Some future development work is suggested. Pros and cons with the used methodology are discussed. The most crucial parameter to be added is probably a model describing the interaction between motorists and bicyclists, for example, how risk is influenced by the lateral position of the bicyclist in relation to the motorist. It is concluded that the interaction seems to be optimal when both groups share the roadway.

Original languageEnglish
Pages (from-to)589 - 599
Number of pages11
JournalAccident Analysis and Prevention
Volume32
Issue number4
DOIs
Publication statusPublished - 2000
MoE publication typeA1 Journal article-refereed

Fingerprint

Bicycles
bicycle
expert
Safety
Crosswalks
Automobiles
Paintings
Equidae
Painting
interaction
layout
motor vehicle
Color
simulation
methodology
Group

Keywords

  • expert
  • model
  • safety
  • bicyclist
  • raised crossing

Cite this

Leden, Lars ; Gårder, Per ; Pulkkinen, Urho. / An expert judgment model applied to estimating the safety effect of a bicycle facility. In: Accident Analysis and Prevention. 2000 ; Vol. 32, No. 4. pp. 589 - 599.
@article{cbd4d8c0484e4f9d8b0f402041fdf14c,
title = "An expert judgment model applied to estimating the safety effect of a bicycle facility",
abstract = "This paper presents a risk index model that can be used for assessing the safety effect of countermeasures. The model estimates risk in a multiplicative way, which makes it possible to analyze the impact of different factors separately. Expert judgments are incorporated through a Bayesian error model. The variance of the risk estimate is determined by Monte-Carlo simulation. The model was applied to assess the safety effect of a new design of a bicycle crossing. The intent was to gain safety by raising the crossings to reduce vehicle speeds and by making the crossings more visible by painting them in a bright color. Before the implementations, bicyclists were riding on bicycle crossings of conventional Swedish type, i.e. similar to crosswalks but delineated by white squares rather than solid lines or zebra markings. Automobile speeds were reduced as anticipated. However, it seems as if the positive effect of this was more or less canceled out by increased bicycle speeds. The safety per bicyclist was still improved by approximately 20{\%}. This improvement was primarily caused by an increase in bicycle flow, since the data show that more bicyclists at a given location seem to benefit their safety. The increase in bicycle flow was probably caused by the new layout of the crossings since bicyclists perceived them as safer and causing less delay. Some future development work is suggested. Pros and cons with the used methodology are discussed. The most crucial parameter to be added is probably a model describing the interaction between motorists and bicyclists, for example, how risk is influenced by the lateral position of the bicyclist in relation to the motorist. It is concluded that the interaction seems to be optimal when both groups share the roadway.",
keywords = "expert, model, safety, bicyclist, raised crossing",
author = "Lars Leden and Per G{\aa}rder and Urho Pulkkinen",
year = "2000",
doi = "10.1016/S0001-4575(99)00090-1",
language = "English",
volume = "32",
pages = "589 -- 599",
journal = "Accident Analysis and Prevention",
issn = "0001-4575",
publisher = "Elsevier",
number = "4",

}

An expert judgment model applied to estimating the safety effect of a bicycle facility. / Leden, Lars; Gårder, Per (Corresponding Author); Pulkkinen, Urho.

In: Accident Analysis and Prevention, Vol. 32, No. 4, 2000, p. 589 - 599.

Research output: Contribution to journalArticleScientificpeer-review

TY - JOUR

T1 - An expert judgment model applied to estimating the safety effect of a bicycle facility

AU - Leden, Lars

AU - Gårder, Per

AU - Pulkkinen, Urho

PY - 2000

Y1 - 2000

N2 - This paper presents a risk index model that can be used for assessing the safety effect of countermeasures. The model estimates risk in a multiplicative way, which makes it possible to analyze the impact of different factors separately. Expert judgments are incorporated through a Bayesian error model. The variance of the risk estimate is determined by Monte-Carlo simulation. The model was applied to assess the safety effect of a new design of a bicycle crossing. The intent was to gain safety by raising the crossings to reduce vehicle speeds and by making the crossings more visible by painting them in a bright color. Before the implementations, bicyclists were riding on bicycle crossings of conventional Swedish type, i.e. similar to crosswalks but delineated by white squares rather than solid lines or zebra markings. Automobile speeds were reduced as anticipated. However, it seems as if the positive effect of this was more or less canceled out by increased bicycle speeds. The safety per bicyclist was still improved by approximately 20%. This improvement was primarily caused by an increase in bicycle flow, since the data show that more bicyclists at a given location seem to benefit their safety. The increase in bicycle flow was probably caused by the new layout of the crossings since bicyclists perceived them as safer and causing less delay. Some future development work is suggested. Pros and cons with the used methodology are discussed. The most crucial parameter to be added is probably a model describing the interaction between motorists and bicyclists, for example, how risk is influenced by the lateral position of the bicyclist in relation to the motorist. It is concluded that the interaction seems to be optimal when both groups share the roadway.

AB - This paper presents a risk index model that can be used for assessing the safety effect of countermeasures. The model estimates risk in a multiplicative way, which makes it possible to analyze the impact of different factors separately. Expert judgments are incorporated through a Bayesian error model. The variance of the risk estimate is determined by Monte-Carlo simulation. The model was applied to assess the safety effect of a new design of a bicycle crossing. The intent was to gain safety by raising the crossings to reduce vehicle speeds and by making the crossings more visible by painting them in a bright color. Before the implementations, bicyclists were riding on bicycle crossings of conventional Swedish type, i.e. similar to crosswalks but delineated by white squares rather than solid lines or zebra markings. Automobile speeds were reduced as anticipated. However, it seems as if the positive effect of this was more or less canceled out by increased bicycle speeds. The safety per bicyclist was still improved by approximately 20%. This improvement was primarily caused by an increase in bicycle flow, since the data show that more bicyclists at a given location seem to benefit their safety. The increase in bicycle flow was probably caused by the new layout of the crossings since bicyclists perceived them as safer and causing less delay. Some future development work is suggested. Pros and cons with the used methodology are discussed. The most crucial parameter to be added is probably a model describing the interaction between motorists and bicyclists, for example, how risk is influenced by the lateral position of the bicyclist in relation to the motorist. It is concluded that the interaction seems to be optimal when both groups share the roadway.

KW - expert

KW - model

KW - safety

KW - bicyclist

KW - raised crossing

U2 - 10.1016/S0001-4575(99)00090-1

DO - 10.1016/S0001-4575(99)00090-1

M3 - Article

VL - 32

SP - 589

EP - 599

JO - Accident Analysis and Prevention

JF - Accident Analysis and Prevention

SN - 0001-4575

IS - 4

ER -