Abstract
While developing divertor remote handling maintenance systems at the Divertor Test Platform 2 facility, some risks and sensitivity points related to the Cassette Multifunctional Mover control system software were discovered and evaluated. The control system architecture has to simultaneously fulfill the demanding ITER remote handling requirements and to face new requirements being uncovered during the trials. Especially evolving non-functional requirements such as reliability and safety have an effect on the control system architecture as it is getting more mature. An evaluation of the implications from architectural decisions is necessary before implementation efforts, as an architecture left to develop without evaluation may lead to a dead end and therefore soaring development costs. After studying existing architecture analysis methods an analysis method was developed to gain confidence to carry out the proposed changes.
Original language | English |
---|---|
Pages (from-to) | 2071-2074 |
Number of pages | 4 |
Journal | Fusion Engineering and Design |
Volume | 86 |
Issue number | 9-11 |
DOIs | |
Publication status | Published - 2011 |
MoE publication type | A1 Journal article-refereed |
Event | 26th Symposium of Fusion Technology, SOFT-26 - Porto, Portugal Duration: 27 Sept 2010 → 1 Oct 2010 Conference number: 26 |
Keywords
- ATAM
- remote handling
- SAAM
- software architecture analysis