Angle-resolved measurements and modelling of diffuse reflectance and luminescence

Dissertation

Priit Jaanson

Research output: ThesisDissertationMonograph

Abstract

This thesis covers angle-resolved spectrophotometric measurements and modelling of diffuse reflectance and luminescence. Most of the work related to diffuse reflectance is performed in view of providing SI-traceability to radiative transfer codes used in Earth observation. The angleresolved measurements of luminescent surfaces are used to study goniometrical properties of reflectance and luminescence of reference materials used in appearance measurements. Radiative transfer models that simulate the transmission of light through atmosphere and vegetation are used to interpret the measurements of on-orbit sensors. One way of validating these models is using artificial targets that are characterised by SI-traceable measurements of reflectance and shape. The bidirectional reflectance factors of many roughened anodised and non-anodised surfaces were measured, and used to test the suitability of micro-facet scattering functions to present the scattering properties of such surfaces. Based on the results, a grooved and an identical flat target were constructed and characterised for bidirectional reflectance factors. The bidirectional reflectance factors of the flat target were used to parametrise the scattering functions for rough surfaces. The grooved target was measured for its coordinates describing shape, which were used to construct a structural model of the grooved target. The structural model, with its optical properties defined by the parametrised scattering functions, was used to simulate the bidirectional reflectance factors of the grooved target with the tested radiative transfer model. The measured and modelled bidirectional reflectance factors agreed within corresponding expanded uncertainties for most of the measured geometries, but not all. Non-Lambertian emission of luminescence from solid luminescent materials has been established, however, instrumentation for angle-resolved measurements of luminescence have not been readily available. The MIKES-Aalto goniofluorometer was extensively characterised to improve the accuracy of bispectral luminescent radiance factor measurements. In addition, a method for goniometrical measurements of quantum efficiency and quantum yield was validated against interlaboratory measurements. The improved measurement capability was used to describe absorbance dependent reflectance angular profiles in solid amorphous luminescent materials. In addition, a reference material for luminescence measurements was proposed and characterised. The new material showed more Lambertian angular luminescence emission and reflectance profiles than the conventionally used materials.
Original languageEnglish
QualificationDoctor Degree
Awarding Institution
  • Aalto University
Supervisors/Advisors
  • Ikonen, Erkki, Supervisor, External person
  • Manoocheri, Farshid, Advisor, External person
Award date3 Nov 2017
Place of PublicationEspoo
Publisher
Print ISBNs978-952-60-7657-7, 978-951-38-8575-5
Electronic ISBNs978-952-60-7656-0, 978-951-38-8574-8
Publication statusPublished - 2017
MoE publication typeG4 Doctoral dissertation (monograph)

Fingerprint

luminescence
reflectance
bidirectional reflectance
scattering functions
radiative transfer
International System of Units
theses
profiles
vegetation
radiance
quantum efficiency
flat surfaces
orbits
optical properties
atmospheres
sensors
geometry
scattering

Keywords

  • reflectance
  • luminescence
  • bidirectional reflectance distribution function
  • bidirectional
  • reflectance factor
  • radiance factor
  • bispectral luminescent radiance factor
  • quantum
  • efficiency

Cite this

@phdthesis{3d87bd0e7a4b48ef9d47554b731594b6,
title = "Angle-resolved measurements and modelling of diffuse reflectance and luminescence: Dissertation",
abstract = "This thesis covers angle-resolved spectrophotometric measurements and modelling of diffuse reflectance and luminescence. Most of the work related to diffuse reflectance is performed in view of providing SI-traceability to radiative transfer codes used in Earth observation. The angleresolved measurements of luminescent surfaces are used to study goniometrical properties of reflectance and luminescence of reference materials used in appearance measurements. Radiative transfer models that simulate the transmission of light through atmosphere and vegetation are used to interpret the measurements of on-orbit sensors. One way of validating these models is using artificial targets that are characterised by SI-traceable measurements of reflectance and shape. The bidirectional reflectance factors of many roughened anodised and non-anodised surfaces were measured, and used to test the suitability of micro-facet scattering functions to present the scattering properties of such surfaces. Based on the results, a grooved and an identical flat target were constructed and characterised for bidirectional reflectance factors. The bidirectional reflectance factors of the flat target were used to parametrise the scattering functions for rough surfaces. The grooved target was measured for its coordinates describing shape, which were used to construct a structural model of the grooved target. The structural model, with its optical properties defined by the parametrised scattering functions, was used to simulate the bidirectional reflectance factors of the grooved target with the tested radiative transfer model. The measured and modelled bidirectional reflectance factors agreed within corresponding expanded uncertainties for most of the measured geometries, but not all. Non-Lambertian emission of luminescence from solid luminescent materials has been established, however, instrumentation for angle-resolved measurements of luminescence have not been readily available. The MIKES-Aalto goniofluorometer was extensively characterised to improve the accuracy of bispectral luminescent radiance factor measurements. In addition, a method for goniometrical measurements of quantum efficiency and quantum yield was validated against interlaboratory measurements. The improved measurement capability was used to describe absorbance dependent reflectance angular profiles in solid amorphous luminescent materials. In addition, a reference material for luminescence measurements was proposed and characterised. The new material showed more Lambertian angular luminescence emission and reflectance profiles than the conventionally used materials.",
keywords = "reflectance, luminescence, bidirectional reflectance distribution function, bidirectional, reflectance factor, radiance factor, bispectral luminescent radiance factor, quantum, efficiency",
author = "Priit Jaanson",
year = "2017",
language = "English",
isbn = "978-952-60-7657-7",
series = "Aalto University publication series: Doctoral dissertations",
publisher = "Aalto University",
number = "195",
address = "Finland",
school = "Aalto University",

}

Angle-resolved measurements and modelling of diffuse reflectance and luminescence : Dissertation. / Jaanson, Priit.

Espoo : Aalto University, 2017. 59 p.

Research output: ThesisDissertationMonograph

TY - THES

T1 - Angle-resolved measurements and modelling of diffuse reflectance and luminescence

T2 - Dissertation

AU - Jaanson, Priit

PY - 2017

Y1 - 2017

N2 - This thesis covers angle-resolved spectrophotometric measurements and modelling of diffuse reflectance and luminescence. Most of the work related to diffuse reflectance is performed in view of providing SI-traceability to radiative transfer codes used in Earth observation. The angleresolved measurements of luminescent surfaces are used to study goniometrical properties of reflectance and luminescence of reference materials used in appearance measurements. Radiative transfer models that simulate the transmission of light through atmosphere and vegetation are used to interpret the measurements of on-orbit sensors. One way of validating these models is using artificial targets that are characterised by SI-traceable measurements of reflectance and shape. The bidirectional reflectance factors of many roughened anodised and non-anodised surfaces were measured, and used to test the suitability of micro-facet scattering functions to present the scattering properties of such surfaces. Based on the results, a grooved and an identical flat target were constructed and characterised for bidirectional reflectance factors. The bidirectional reflectance factors of the flat target were used to parametrise the scattering functions for rough surfaces. The grooved target was measured for its coordinates describing shape, which were used to construct a structural model of the grooved target. The structural model, with its optical properties defined by the parametrised scattering functions, was used to simulate the bidirectional reflectance factors of the grooved target with the tested radiative transfer model. The measured and modelled bidirectional reflectance factors agreed within corresponding expanded uncertainties for most of the measured geometries, but not all. Non-Lambertian emission of luminescence from solid luminescent materials has been established, however, instrumentation for angle-resolved measurements of luminescence have not been readily available. The MIKES-Aalto goniofluorometer was extensively characterised to improve the accuracy of bispectral luminescent radiance factor measurements. In addition, a method for goniometrical measurements of quantum efficiency and quantum yield was validated against interlaboratory measurements. The improved measurement capability was used to describe absorbance dependent reflectance angular profiles in solid amorphous luminescent materials. In addition, a reference material for luminescence measurements was proposed and characterised. The new material showed more Lambertian angular luminescence emission and reflectance profiles than the conventionally used materials.

AB - This thesis covers angle-resolved spectrophotometric measurements and modelling of diffuse reflectance and luminescence. Most of the work related to diffuse reflectance is performed in view of providing SI-traceability to radiative transfer codes used in Earth observation. The angleresolved measurements of luminescent surfaces are used to study goniometrical properties of reflectance and luminescence of reference materials used in appearance measurements. Radiative transfer models that simulate the transmission of light through atmosphere and vegetation are used to interpret the measurements of on-orbit sensors. One way of validating these models is using artificial targets that are characterised by SI-traceable measurements of reflectance and shape. The bidirectional reflectance factors of many roughened anodised and non-anodised surfaces were measured, and used to test the suitability of micro-facet scattering functions to present the scattering properties of such surfaces. Based on the results, a grooved and an identical flat target were constructed and characterised for bidirectional reflectance factors. The bidirectional reflectance factors of the flat target were used to parametrise the scattering functions for rough surfaces. The grooved target was measured for its coordinates describing shape, which were used to construct a structural model of the grooved target. The structural model, with its optical properties defined by the parametrised scattering functions, was used to simulate the bidirectional reflectance factors of the grooved target with the tested radiative transfer model. The measured and modelled bidirectional reflectance factors agreed within corresponding expanded uncertainties for most of the measured geometries, but not all. Non-Lambertian emission of luminescence from solid luminescent materials has been established, however, instrumentation for angle-resolved measurements of luminescence have not been readily available. The MIKES-Aalto goniofluorometer was extensively characterised to improve the accuracy of bispectral luminescent radiance factor measurements. In addition, a method for goniometrical measurements of quantum efficiency and quantum yield was validated against interlaboratory measurements. The improved measurement capability was used to describe absorbance dependent reflectance angular profiles in solid amorphous luminescent materials. In addition, a reference material for luminescence measurements was proposed and characterised. The new material showed more Lambertian angular luminescence emission and reflectance profiles than the conventionally used materials.

KW - reflectance

KW - luminescence

KW - bidirectional reflectance distribution function

KW - bidirectional

KW - reflectance factor

KW - radiance factor

KW - bispectral luminescent radiance factor

KW - quantum

KW - efficiency

M3 - Dissertation

SN - 978-952-60-7657-7

SN - 978-951-38-8575-5

T3 - Aalto University publication series: Doctoral dissertations

PB - Aalto University

CY - Espoo

ER -