Anisotropic strain gradient thermoelasticity for cellular structures: Plate models, homogenization and isogeometric analysis

Sergei Khakalo (Corresponding Author), Jarkko Niiranen

    Research output: Contribution to journalArticleScientificpeer-review

    17 Citations (Scopus)


    For three-dimensional cellular plate-like structures with a triangular (extruded lattice) microarchitecture, the article develops a pair of two-scale plate models relying on the anisotropic form of Mindlin’s strain gradient thermoelasticity theory. Accordingly, a computational homogenization method is proposed for determining the constitutive parameters of the related higher-order constitutive tensors. First, a Reissner–Mindlin plate model is derived by dimension reduction from a general framework of three-dimensional orthotropic strain gradient thermoelasticity and written as a variational formulation. An isogeometric conforming Galerkin method is formulated accordingly. Second, the plate model is modified in order to reduce the number of the constitutive strain gradient parameters. These steps are then repeated by following the kinematical assumptions of the Kirchhoff plate theory. Third, in order to see the cellular microarchitecture as a homogeneous three-dimensional material with classical modulae of transversal isotropy, classical computational homogenization is accomplished for determining the corresponding material parameters. Fourth, in order to see the cellular structures as two-dimensional plates, a non-classical homogenization procedure is proposed for the identification of the strain gradient modulae of the plate models. Finally, a set of numerical examples illustrates the reliability and efficiency of the resulting plate models in homogenizing cellular plate-like structures into strain gradient plate models capturing the bending size effects induced by the microarchitecture.
    Original languageEnglish
    Article number103728
    Number of pages36
    JournalJournal of the Mechanics and Physics of Solids
    Early online date2019
    Publication statusPublished - 1 Jan 2020
    MoE publication typeA1 Journal article-refereed


    • Cellular plates
    • Lattice microarchitecture
    • Strain gradient thermoelasticity
    • Reissner–Mindlin plate
    • Kirchhoff plate
    • Size effectsIsogeometric analysis

    Fingerprint Dive into the research topics of 'Anisotropic strain gradient thermoelasticity for cellular structures: Plate models, homogenization and isogeometric analysis'. Together they form a unique fingerprint.

    Cite this