Ash vaporization in circulating fluidized bed coal combustion

Terttaliisa Lind, Esko Kauppinen, Willy Maenhaut, Anup Shah, Frank Huggins

Research output: Contribution to journalArticleScientificpeer-review

29 Citations (Scopus)

Abstract

In this work, the vaporization of the ash forming constituents in circulating fluidized bed combustion (CFBC) in a full-scale 80 MWth unit was studied. Ash vaporization in CFBC was studied by measuring the fly ash aerosols in a full-scale boiler upstream of the electrostatic precipitator (ESP) at the flue gas temperature of 125°C. The fuel was a Venezuelan bituminous coal, and a limestone sorbent was used during the measurements. The fly ash number size distributions showed two distinct modes in the submicrometer size range, at particle diameters 0.02 and 0.3 μm. The concentration of the ultrafine 0.02-μm mode showed a large variation with time and it decreased as the measurements advanced. The concentration of the 0.02-μm mode was two orders of magnitude lower than in the submicrometer mode observed earlier in the bubbling FBC and up to three orders of magnitude lower than in the pulverized coal combustion. Scanning electron micrographs showed few ultrafine particles. The intermediate mode at 0.3 μm consisted of particles irregular in shape, and hence in this mode the particles had not been formed via a gas to particle route. We propose that the 0.3-μm mode had been formed from the partial melting of the very fine mineral particles in the coal. The mass size distribution in the size range 0.01–70 μm was unimodal with maximum at 20 μm. Less than 1% of the fly ash particles was found in the submicrometer size range. Ninety percent of Mg in coal was organically bound, and it was found to react with quartz and aluminosilicate minerals inside the coal particle. No Mg was found to be released to the gas phase and Mg mass fraction size distribution was size independent. A fraction of halogens CI, Br and I were found to be in the gas phase after the combustion.
Original languageEnglish
Pages (from-to)135-150
JournalAerosol Science and Technology
Volume24
Issue number3
DOIs
Publication statusPublished - 1996
MoE publication typeA1 Journal article-refereed

Keywords

  • fluidized beds

Fingerprint

Dive into the research topics of 'Ash vaporization in circulating fluidized bed coal combustion'. Together they form a unique fingerprint.

Cite this