Building a reactive molecular dynamics framework for cellulose pyrolysis studies

    Research output: Contribution to conferenceConference AbstractScientific

    Abstract

    Much of the current interest in cellulose pyrolysis stems from technologies that enable the conversion of lignocellulosic biomass into commodity chemicals. Describing these reaction mechanisms is one of the fundamental associated challenges. Computational chemistry methods can complement the experimental knowledge. In our work, we used Reactive Molecular Dynamics (RMD) in conjunction with the ReaxFF force field, enabling formation and breaking of chemical bonds within a classical MD framework with an affordable computational cost. We carried out stochastic RMD simulations to study the high-temperature decomposition of an isolated cellulose molecule [1]. We conducted a total of 16900 simulations for chains with a degree of polymerization (DP) between 8 and 64, for several initial conformations, and in the temperature range of 1400 K to 2200 K. Each simulation was run until the first decomposition event was detected. From this data, the reaction rate constant could be obtained. We observed the decomposition to occur primarily through random cleavage of the glycosidic bonds. An activation energy of (171 ± 2) kJ mol-1 and a frequency factor of (1.07 ± 0.12) * 1015 s-1 were determined for this reaction. These values are within the range of values reported for the global mass loss kinetics of cellulose pyrolysis, and showed no dependence on the DP and on the initial conformation. We also observed the release of some of the characteristic low-molecular-weight products, such as glycolaldehyde, water, formaldehyde, and formic acid. Focusing on isolated molecules contributes to a bottom-up approach, in which we build towards condensed-phase pyrolysis simulations. The next steps may include studying secondary and tertiary decomposition reactions for an isolated chain, adding more chains to the system to include intra-chain interactions, extending the temperature range, and improving the bond information analysis. With these developments, the stochastic RMD approach could be used for detailed studies of cellulose pyrolysis, and used in the design, development and optimization of pyrolytic conversion processes.
    Original languageEnglish
    Publication statusPublished - 2017
    MoE publication typeNot Eligible
    Event4th International Cellulose Conference - Fukuoka, Japan
    Duration: 17 Oct 201720 Oct 2017

    Conference

    Conference4th International Cellulose Conference
    CountryJapan
    CityFukuoka
    Period17/10/1720/10/17

    Fingerprint

    Cellulose
    Molecular dynamics
    Pyrolysis
    Decomposition
    formic acid
    Conformations
    Polymerization
    Computational chemistry
    Information analysis
    Molecules
    Chemical bonds
    Temperature
    Formaldehyde
    Reaction rates
    Rate constants
    Biomass
    Activation energy
    Molecular weight
    Kinetics
    Water

    Keywords

    • cellulose
    • pyrolysis
    • molecular dynamics
    • ReaxFF
    • ProperTune

    Cite this

    Vaari, J., & Paajanen, A. (2017). Building a reactive molecular dynamics framework for cellulose pyrolysis studies. Abstract from 4th International Cellulose Conference, Fukuoka, Japan.
    Vaari, Jukka ; Paajanen, Antti. / Building a reactive molecular dynamics framework for cellulose pyrolysis studies. Abstract from 4th International Cellulose Conference, Fukuoka, Japan.
    @conference{52a03bc095454a72acfd3a79253ba469,
    title = "Building a reactive molecular dynamics framework for cellulose pyrolysis studies",
    abstract = "Much of the current interest in cellulose pyrolysis stems from technologies that enable the conversion of lignocellulosic biomass into commodity chemicals. Describing these reaction mechanisms is one of the fundamental associated challenges. Computational chemistry methods can complement the experimental knowledge. In our work, we used Reactive Molecular Dynamics (RMD) in conjunction with the ReaxFF force field, enabling formation and breaking of chemical bonds within a classical MD framework with an affordable computational cost. We carried out stochastic RMD simulations to study the high-temperature decomposition of an isolated cellulose molecule [1]. We conducted a total of 16900 simulations for chains with a degree of polymerization (DP) between 8 and 64, for several initial conformations, and in the temperature range of 1400 K to 2200 K. Each simulation was run until the first decomposition event was detected. From this data, the reaction rate constant could be obtained. We observed the decomposition to occur primarily through random cleavage of the glycosidic bonds. An activation energy of (171 ± 2) kJ mol-1 and a frequency factor of (1.07 ± 0.12) * 1015 s-1 were determined for this reaction. These values are within the range of values reported for the global mass loss kinetics of cellulose pyrolysis, and showed no dependence on the DP and on the initial conformation. We also observed the release of some of the characteristic low-molecular-weight products, such as glycolaldehyde, water, formaldehyde, and formic acid. Focusing on isolated molecules contributes to a bottom-up approach, in which we build towards condensed-phase pyrolysis simulations. The next steps may include studying secondary and tertiary decomposition reactions for an isolated chain, adding more chains to the system to include intra-chain interactions, extending the temperature range, and improving the bond information analysis. With these developments, the stochastic RMD approach could be used for detailed studies of cellulose pyrolysis, and used in the design, development and optimization of pyrolytic conversion processes.",
    keywords = "cellulose, pyrolysis, molecular dynamics, ReaxFF, ProperTune",
    author = "Jukka Vaari and Antti Paajanen",
    note = "Abstracts + extended 1 page abstracts only; 4th International Cellulose Conference ; Conference date: 17-10-2017 Through 20-10-2017",
    year = "2017",
    language = "English",

    }

    Vaari, J & Paajanen, A 2017, 'Building a reactive molecular dynamics framework for cellulose pyrolysis studies', 4th International Cellulose Conference, Fukuoka, Japan, 17/10/17 - 20/10/17.

    Building a reactive molecular dynamics framework for cellulose pyrolysis studies. / Vaari, Jukka; Paajanen, Antti.

    2017. Abstract from 4th International Cellulose Conference, Fukuoka, Japan.

    Research output: Contribution to conferenceConference AbstractScientific

    TY - CONF

    T1 - Building a reactive molecular dynamics framework for cellulose pyrolysis studies

    AU - Vaari, Jukka

    AU - Paajanen, Antti

    N1 - Abstracts + extended 1 page abstracts only

    PY - 2017

    Y1 - 2017

    N2 - Much of the current interest in cellulose pyrolysis stems from technologies that enable the conversion of lignocellulosic biomass into commodity chemicals. Describing these reaction mechanisms is one of the fundamental associated challenges. Computational chemistry methods can complement the experimental knowledge. In our work, we used Reactive Molecular Dynamics (RMD) in conjunction with the ReaxFF force field, enabling formation and breaking of chemical bonds within a classical MD framework with an affordable computational cost. We carried out stochastic RMD simulations to study the high-temperature decomposition of an isolated cellulose molecule [1]. We conducted a total of 16900 simulations for chains with a degree of polymerization (DP) between 8 and 64, for several initial conformations, and in the temperature range of 1400 K to 2200 K. Each simulation was run until the first decomposition event was detected. From this data, the reaction rate constant could be obtained. We observed the decomposition to occur primarily through random cleavage of the glycosidic bonds. An activation energy of (171 ± 2) kJ mol-1 and a frequency factor of (1.07 ± 0.12) * 1015 s-1 were determined for this reaction. These values are within the range of values reported for the global mass loss kinetics of cellulose pyrolysis, and showed no dependence on the DP and on the initial conformation. We also observed the release of some of the characteristic low-molecular-weight products, such as glycolaldehyde, water, formaldehyde, and formic acid. Focusing on isolated molecules contributes to a bottom-up approach, in which we build towards condensed-phase pyrolysis simulations. The next steps may include studying secondary and tertiary decomposition reactions for an isolated chain, adding more chains to the system to include intra-chain interactions, extending the temperature range, and improving the bond information analysis. With these developments, the stochastic RMD approach could be used for detailed studies of cellulose pyrolysis, and used in the design, development and optimization of pyrolytic conversion processes.

    AB - Much of the current interest in cellulose pyrolysis stems from technologies that enable the conversion of lignocellulosic biomass into commodity chemicals. Describing these reaction mechanisms is one of the fundamental associated challenges. Computational chemistry methods can complement the experimental knowledge. In our work, we used Reactive Molecular Dynamics (RMD) in conjunction with the ReaxFF force field, enabling formation and breaking of chemical bonds within a classical MD framework with an affordable computational cost. We carried out stochastic RMD simulations to study the high-temperature decomposition of an isolated cellulose molecule [1]. We conducted a total of 16900 simulations for chains with a degree of polymerization (DP) between 8 and 64, for several initial conformations, and in the temperature range of 1400 K to 2200 K. Each simulation was run until the first decomposition event was detected. From this data, the reaction rate constant could be obtained. We observed the decomposition to occur primarily through random cleavage of the glycosidic bonds. An activation energy of (171 ± 2) kJ mol-1 and a frequency factor of (1.07 ± 0.12) * 1015 s-1 were determined for this reaction. These values are within the range of values reported for the global mass loss kinetics of cellulose pyrolysis, and showed no dependence on the DP and on the initial conformation. We also observed the release of some of the characteristic low-molecular-weight products, such as glycolaldehyde, water, formaldehyde, and formic acid. Focusing on isolated molecules contributes to a bottom-up approach, in which we build towards condensed-phase pyrolysis simulations. The next steps may include studying secondary and tertiary decomposition reactions for an isolated chain, adding more chains to the system to include intra-chain interactions, extending the temperature range, and improving the bond information analysis. With these developments, the stochastic RMD approach could be used for detailed studies of cellulose pyrolysis, and used in the design, development and optimization of pyrolytic conversion processes.

    KW - cellulose

    KW - pyrolysis

    KW - molecular dynamics

    KW - ReaxFF

    KW - ProperTune

    M3 - Conference Abstract

    ER -

    Vaari J, Paajanen A. Building a reactive molecular dynamics framework for cellulose pyrolysis studies. 2017. Abstract from 4th International Cellulose Conference, Fukuoka, Japan.