Abstract
The molecular mechanisms by which the AP-1 transcription factor c-Jun exerts its biological functions are not clearly understood. In addition to its well established role in transcriptional regulation of gene expression, several reports have suggested that c-Jun may also regulate cell behavior by non-transcriptional mechanisms. Here, we report that small interfering RNA-mediated depletion of c-Jun from mammalian cells results in inhibition of 28 S and 18 S rRNA accumulation. Moreover, we show that c-Jun depletion results in partial translocation of RNA helicase DDX21, implicated in rRNA processing, from the nucleolus to the nucleoplasm. We demonstrate that DDX21 translocation is rescued by exogenous c-Jun expression and that c-Jun depletion inhibits rRNA binding of DDX21. Furthermore, the direct interaction between c-Jun and DDX21 regulates nucleolar localization of DDX21. These results demonstrate that in addition to its transcriptional effects, c-Jun regulates rRNA processing and nucleolar compartmentalization of the rRNA processing protein DDX21. Thus, our results demonstrate a nucleolar mechanism through which c-Jun can regulate cell behavior. Moreover, these results suggest that the phenotypes observed previously in c-Jun-depleted mouse models and cell lines could be partly due to the effects of c-Jun on rRNA processing.
Original language | English |
---|---|
Pages (from-to) | 7046-7053 |
Journal | Journal of Biological Chemistry |
Volume | 283 |
Issue number | 11 |
DOIs | |
Publication status | Published - 2008 |
MoE publication type | A1 Journal article-refereed |
Keywords
- c-Jun
- AP-1 transcription
- gene transcription
- transcription factors
- cancer cells
- cell behavior
- protein expression
- proteins
- DDX21
- gene expression