Carbon balance and radiative forcing of Finnish peatlands 1900 - 2100

The impact of foresty drainage

Kari Minkkinen (Corresponding Author), Riitta Korhonen, Ilkka Savolainen, Jukka Laine

Research output: Contribution to journalArticleScientificpeer-review

134 Citations (Scopus)

Abstract

Natural peatlands accumulate carbon (C) and nitrogen (N). They affect the global climate by binding carbon dioxide (CO2) and releasing methane (CH4) to the atmosphere; in contrast fluxes of nitrous oxide (N2O) in natural peatlands are insignificant. Changes in drainage associated with forestry alter these greenhouse gas (GHG) fluxes and thus the radiative forcing (RF) of peatlands.
In this paper, changes in peat and tree stand C stores, GHG fluxes and the consequent RF of Finnish undisturbed and forestry‐drained peatlands are estimated for 1900–2100. The C store in peat is estimated at 5.5 Pg in 1950.
The rate of C sequestration into peat has increased from 2.2 Tg a‐‐1 in 1900, when all peatlands were undrained, to 3.6 Tg a‐‐1 at present, when c. 60% of peatlands have been drained for forestry. The C store in tree stands has increased from 60 to 170 Tg during the 20th century.
Methane emissions have decreased from an estimated 1.0–0.5 Tg CH4‐‐C a‐‐1, while those of N2O have increased from 0.0003 to 0.005 Tg N2O‐‐N a‐‐1.
The altered exchange rates of GHG gases since 1900 have decreased the RF of peatlands in Finland by about 3 mW m‐‐2 from the predrainage situation. This result contradicts the common hypothesis that drainage results in increased C emissions and therefore increased RF of peatlands.
The negative radiative forcing due to drainage is caused by increases in CO2 sequestration in peat (‐‐0.5 mW m‐‐2), tree stands and wood products (‐‐0.8 mW m‐‐2), decreases in CH4 emissions from peat to the atmosphere (‐‐1.6 mW m‐‐2), and only a small increase in N2O emissions (+0.1 mW m‐‐2).
Although the calculations presented include many uncertainties, the above results are considered qualitatively reliable and may be expected to be valid also for Scandinavian countries and Russia, where most forestry‐drained peatlands occur outside Finland.
Original languageEnglish
Pages (from-to)785-799
JournalGlobal Change Biology
Volume8
Issue number8
DOIs
Publication statusPublished - 2002
MoE publication typeA1 Journal article-refereed

Fingerprint

Peat
carbon balance
radiative forcing
peatland
Drainage
Carbon
drainage
Greenhouse gases
peat
Forestry
Methane
Fluxes
greenhouse gas
Wood products
Nitrous Oxide
carbon sequestration
Carbon Dioxide
forestry
methane
Nitrogen

Cite this

Minkkinen, Kari ; Korhonen, Riitta ; Savolainen, Ilkka ; Laine, Jukka. / Carbon balance and radiative forcing of Finnish peatlands 1900 - 2100 : The impact of foresty drainage. In: Global Change Biology. 2002 ; Vol. 8, No. 8. pp. 785-799.
@article{c97d14cc97284b18bc3c3e9db05053c6,
title = "Carbon balance and radiative forcing of Finnish peatlands 1900 - 2100: The impact of foresty drainage",
abstract = "Natural peatlands accumulate carbon (C) and nitrogen (N). They affect the global climate by binding carbon dioxide (CO2) and releasing methane (CH4) to the atmosphere; in contrast fluxes of nitrous oxide (N2O) in natural peatlands are insignificant. Changes in drainage associated with forestry alter these greenhouse gas (GHG) fluxes and thus the radiative forcing (RF) of peatlands. In this paper, changes in peat and tree stand C stores, GHG fluxes and the consequent RF of Finnish undisturbed and forestry‐drained peatlands are estimated for 1900–2100. The C store in peat is estimated at 5.5 Pg in 1950. The rate of C sequestration into peat has increased from 2.2 Tg a‐‐1 in 1900, when all peatlands were undrained, to 3.6 Tg a‐‐1 at present, when c. 60{\%} of peatlands have been drained for forestry. The C store in tree stands has increased from 60 to 170 Tg during the 20th century. Methane emissions have decreased from an estimated 1.0–0.5 Tg CH4‐‐C a‐‐1, while those of N2O have increased from 0.0003 to 0.005 Tg N2O‐‐N a‐‐1. The altered exchange rates of GHG gases since 1900 have decreased the RF of peatlands in Finland by about 3 mW m‐‐2 from the predrainage situation. This result contradicts the common hypothesis that drainage results in increased C emissions and therefore increased RF of peatlands. The negative radiative forcing due to drainage is caused by increases in CO2 sequestration in peat (‐‐0.5 mW m‐‐2), tree stands and wood products (‐‐0.8 mW m‐‐2), decreases in CH4 emissions from peat to the atmosphere (‐‐1.6 mW m‐‐2), and only a small increase in N2O emissions (+0.1 mW m‐‐2). Although the calculations presented include many uncertainties, the above results are considered qualitatively reliable and may be expected to be valid also for Scandinavian countries and Russia, where most forestry‐drained peatlands occur outside Finland.",
author = "Kari Minkkinen and Riitta Korhonen and Ilkka Savolainen and Jukka Laine",
year = "2002",
doi = "10.1046/j.1365-2486.2002.00504.x",
language = "English",
volume = "8",
pages = "785--799",
journal = "Global Change Biology",
issn = "1354-1013",
publisher = "Wiley-Blackwell",
number = "8",

}

Carbon balance and radiative forcing of Finnish peatlands 1900 - 2100 : The impact of foresty drainage. / Minkkinen, Kari (Corresponding Author); Korhonen, Riitta; Savolainen, Ilkka; Laine, Jukka.

In: Global Change Biology, Vol. 8, No. 8, 2002, p. 785-799.

Research output: Contribution to journalArticleScientificpeer-review

TY - JOUR

T1 - Carbon balance and radiative forcing of Finnish peatlands 1900 - 2100

T2 - The impact of foresty drainage

AU - Minkkinen, Kari

AU - Korhonen, Riitta

AU - Savolainen, Ilkka

AU - Laine, Jukka

PY - 2002

Y1 - 2002

N2 - Natural peatlands accumulate carbon (C) and nitrogen (N). They affect the global climate by binding carbon dioxide (CO2) and releasing methane (CH4) to the atmosphere; in contrast fluxes of nitrous oxide (N2O) in natural peatlands are insignificant. Changes in drainage associated with forestry alter these greenhouse gas (GHG) fluxes and thus the radiative forcing (RF) of peatlands. In this paper, changes in peat and tree stand C stores, GHG fluxes and the consequent RF of Finnish undisturbed and forestry‐drained peatlands are estimated for 1900–2100. The C store in peat is estimated at 5.5 Pg in 1950. The rate of C sequestration into peat has increased from 2.2 Tg a‐‐1 in 1900, when all peatlands were undrained, to 3.6 Tg a‐‐1 at present, when c. 60% of peatlands have been drained for forestry. The C store in tree stands has increased from 60 to 170 Tg during the 20th century. Methane emissions have decreased from an estimated 1.0–0.5 Tg CH4‐‐C a‐‐1, while those of N2O have increased from 0.0003 to 0.005 Tg N2O‐‐N a‐‐1. The altered exchange rates of GHG gases since 1900 have decreased the RF of peatlands in Finland by about 3 mW m‐‐2 from the predrainage situation. This result contradicts the common hypothesis that drainage results in increased C emissions and therefore increased RF of peatlands. The negative radiative forcing due to drainage is caused by increases in CO2 sequestration in peat (‐‐0.5 mW m‐‐2), tree stands and wood products (‐‐0.8 mW m‐‐2), decreases in CH4 emissions from peat to the atmosphere (‐‐1.6 mW m‐‐2), and only a small increase in N2O emissions (+0.1 mW m‐‐2). Although the calculations presented include many uncertainties, the above results are considered qualitatively reliable and may be expected to be valid also for Scandinavian countries and Russia, where most forestry‐drained peatlands occur outside Finland.

AB - Natural peatlands accumulate carbon (C) and nitrogen (N). They affect the global climate by binding carbon dioxide (CO2) and releasing methane (CH4) to the atmosphere; in contrast fluxes of nitrous oxide (N2O) in natural peatlands are insignificant. Changes in drainage associated with forestry alter these greenhouse gas (GHG) fluxes and thus the radiative forcing (RF) of peatlands. In this paper, changes in peat and tree stand C stores, GHG fluxes and the consequent RF of Finnish undisturbed and forestry‐drained peatlands are estimated for 1900–2100. The C store in peat is estimated at 5.5 Pg in 1950. The rate of C sequestration into peat has increased from 2.2 Tg a‐‐1 in 1900, when all peatlands were undrained, to 3.6 Tg a‐‐1 at present, when c. 60% of peatlands have been drained for forestry. The C store in tree stands has increased from 60 to 170 Tg during the 20th century. Methane emissions have decreased from an estimated 1.0–0.5 Tg CH4‐‐C a‐‐1, while those of N2O have increased from 0.0003 to 0.005 Tg N2O‐‐N a‐‐1. The altered exchange rates of GHG gases since 1900 have decreased the RF of peatlands in Finland by about 3 mW m‐‐2 from the predrainage situation. This result contradicts the common hypothesis that drainage results in increased C emissions and therefore increased RF of peatlands. The negative radiative forcing due to drainage is caused by increases in CO2 sequestration in peat (‐‐0.5 mW m‐‐2), tree stands and wood products (‐‐0.8 mW m‐‐2), decreases in CH4 emissions from peat to the atmosphere (‐‐1.6 mW m‐‐2), and only a small increase in N2O emissions (+0.1 mW m‐‐2). Although the calculations presented include many uncertainties, the above results are considered qualitatively reliable and may be expected to be valid also for Scandinavian countries and Russia, where most forestry‐drained peatlands occur outside Finland.

U2 - 10.1046/j.1365-2486.2002.00504.x

DO - 10.1046/j.1365-2486.2002.00504.x

M3 - Article

VL - 8

SP - 785

EP - 799

JO - Global Change Biology

JF - Global Change Biology

SN - 1354-1013

IS - 8

ER -