Cassini plasma spectrometer investigation

D. T. Young, J. J. Berthelier, M. Blanc, J. L. Burch, A. J. Coates, R. Goldstein, M. Grande, T. W. Hill, R. E. Johnson, Väinö Kelha, D. J. Mccomas, E. C. Sittler, K. R. Svenes, K. Szegö, P. Tanskanen, Kimmo Ahola, D. Anderson, S. Bakshi, R. A. Baragiola, B. L. BarracloughR. K. Black, S. Bolton, T. Booker, R. Bowman, P. Casey, F. J. Crary, D. Delapp, G. Dirks, N. Eaker, H. Funsten, J. D. Furman, J. T. Gosling, H. Hannula, Christer Holmlund, H. Huomo, J. M. Illiano, P. Jensen, M. A. Johnson, D. R. Linder, T. Luntama, S. Maurice, K. P. Mccabe, K. Mursula, B. T. Narheim, J. E. Nordholt, A. Preece, J. Rudzki, A. Ruitberg, K. Smith, S. Szalai, M. F. Thomsen, Kai Viherkanto, J. Vilppola, T. Vollmer, T. E. Wahl, M. Wüest, Tomi Ylikorpi, C. Zinsmeyer

    Research output: Contribution to journalArticleScientificpeer-review

    373 Citations (Scopus)

    Abstract

    The Cassini Plasma Spectrometer (CAPS) will make comprehensive three-dimensional mass-resolved measurements of the full variety of plasma phenomena found in Saturn's magnetosphere. Our fundamental scientific goals are to understand the nature of saturnian plasmas primarily their sources of ionization, and the means by which they are accelerated, transported, and lost. In so doing the CAPS investigation will contribute to understanding Saturn's magnetosphere and its complex interactions with Titan, the icy satellites and rings, Saturn's ionosphere and aurora, and the solar wind. Our design approach meets these goals by emphasizing two complementary types of measurements: high-time resolution velocity distributions of electrons and all major ion species; and lower-time resolution, high-mass resolution spectra of all ion species. The CAPS instrument is made up of three sensors: the Electron Spectrometer (ELS), the Ion Beam Spectrometer (IBS), and the Ion Mass Spectrometer (IMS). The ELS measures the velocity distribution of electrons from 0.6 eV to 28,250 keV, a range that permits coverage of thermal electrons found at Titan and near the ring plane as well as more energetic trapped electrons and auroral particles. The IBS measures ion velocity distributions with very high angular and energy resolution from 1 eV to 49,800 keV. It is specially designed to measure sharply defined ion beams expected in the solar wind at 9.5 AU, highly directional rammed ion fluxes encountered in Titan's ionosphere, and anticipated field-aligned auroral fluxes. The IMS is designed to measure the composition of hot, diffuse magnetospheric plasmas and low-concentration ion species 1 eV to 50,280 eV with an atomic resolution M/ΔM ∼70 and, for certain molecules, (such asN 2 + and CO+), effective resolution as high as ∼2500. The three sensors are mounted on a motor-driven actuator that rotates the entire instrument over approximately one-half of the sky every 3 min.

    Original languageEnglish
    Pages (from-to)1-112
    Number of pages112
    JournalSpace Science Reviews
    Volume114
    Issue number1-4
    DOIs
    Publication statusPublished - 1 Dec 2004
    MoE publication typeA1 Journal article-refereed

    Fingerprint

    spectrometer
    spectrometers
    plasma
    ion
    mass spectrometers
    Titan
    electron
    electrons
    velocity distribution
    ion beams
    Saturn
    ions
    magnetospheres
    ionospheres
    solar wind
    icy satellites
    Saturn rings
    magnetosphere
    ionosphere
    high resolution

    Keywords

    • Ion composition
    • Magnetosphere
    • Saturn
    • Space plasma
    • Titan

    Cite this

    Young, D. T., Berthelier, J. J., Blanc, M., Burch, J. L., Coates, A. J., Goldstein, R., ... Zinsmeyer, C. (2004). Cassini plasma spectrometer investigation. Space Science Reviews, 114(1-4), 1-112. https://doi.org/10.1007/s11214-004-1406-4
    Young, D. T. ; Berthelier, J. J. ; Blanc, M. ; Burch, J. L. ; Coates, A. J. ; Goldstein, R. ; Grande, M. ; Hill, T. W. ; Johnson, R. E. ; Kelha, Väinö ; Mccomas, D. J. ; Sittler, E. C. ; Svenes, K. R. ; Szegö, K. ; Tanskanen, P. ; Ahola, Kimmo ; Anderson, D. ; Bakshi, S. ; Baragiola, R. A. ; Barraclough, B. L. ; Black, R. K. ; Bolton, S. ; Booker, T. ; Bowman, R. ; Casey, P. ; Crary, F. J. ; Delapp, D. ; Dirks, G. ; Eaker, N. ; Funsten, H. ; Furman, J. D. ; Gosling, J. T. ; Hannula, H. ; Holmlund, Christer ; Huomo, H. ; Illiano, J. M. ; Jensen, P. ; Johnson, M. A. ; Linder, D. R. ; Luntama, T. ; Maurice, S. ; Mccabe, K. P. ; Mursula, K. ; Narheim, B. T. ; Nordholt, J. E. ; Preece, A. ; Rudzki, J. ; Ruitberg, A. ; Smith, K. ; Szalai, S. ; Thomsen, M. F. ; Viherkanto, Kai ; Vilppola, J. ; Vollmer, T. ; Wahl, T. E. ; Wüest, M. ; Ylikorpi, Tomi ; Zinsmeyer, C. / Cassini plasma spectrometer investigation. In: Space Science Reviews. 2004 ; Vol. 114, No. 1-4. pp. 1-112.
    @article{a59a9f8c146849fc9e68d02d6f574196,
    title = "Cassini plasma spectrometer investigation",
    abstract = "The Cassini Plasma Spectrometer (CAPS) will make comprehensive three-dimensional mass-resolved measurements of the full variety of plasma phenomena found in Saturn's magnetosphere. Our fundamental scientific goals are to understand the nature of saturnian plasmas primarily their sources of ionization, and the means by which they are accelerated, transported, and lost. In so doing the CAPS investigation will contribute to understanding Saturn's magnetosphere and its complex interactions with Titan, the icy satellites and rings, Saturn's ionosphere and aurora, and the solar wind. Our design approach meets these goals by emphasizing two complementary types of measurements: high-time resolution velocity distributions of electrons and all major ion species; and lower-time resolution, high-mass resolution spectra of all ion species. The CAPS instrument is made up of three sensors: the Electron Spectrometer (ELS), the Ion Beam Spectrometer (IBS), and the Ion Mass Spectrometer (IMS). The ELS measures the velocity distribution of electrons from 0.6 eV to 28,250 keV, a range that permits coverage of thermal electrons found at Titan and near the ring plane as well as more energetic trapped electrons and auroral particles. The IBS measures ion velocity distributions with very high angular and energy resolution from 1 eV to 49,800 keV. It is specially designed to measure sharply defined ion beams expected in the solar wind at 9.5 AU, highly directional rammed ion fluxes encountered in Titan's ionosphere, and anticipated field-aligned auroral fluxes. The IMS is designed to measure the composition of hot, diffuse magnetospheric plasmas and low-concentration ion species 1 eV to 50,280 eV with an atomic resolution M/ΔM ∼70 and, for certain molecules, (such asN 2 + and CO+), effective resolution as high as ∼2500. The three sensors are mounted on a motor-driven actuator that rotates the entire instrument over approximately one-half of the sky every 3 min.",
    keywords = "Ion composition, Magnetosphere, Saturn, Space plasma, Titan",
    author = "Young, {D. T.} and Berthelier, {J. J.} and M. Blanc and Burch, {J. L.} and Coates, {A. J.} and R. Goldstein and M. Grande and Hill, {T. W.} and Johnson, {R. E.} and V{\"a}in{\"o} Kelha and Mccomas, {D. J.} and Sittler, {E. C.} and Svenes, {K. R.} and K. Szeg{\"o} and P. Tanskanen and Kimmo Ahola and D. Anderson and S. Bakshi and Baragiola, {R. A.} and Barraclough, {B. L.} and Black, {R. K.} and S. Bolton and T. Booker and R. Bowman and P. Casey and Crary, {F. J.} and D. Delapp and G. Dirks and N. Eaker and H. Funsten and Furman, {J. D.} and Gosling, {J. T.} and H. Hannula and Christer Holmlund and H. Huomo and Illiano, {J. M.} and P. Jensen and Johnson, {M. A.} and Linder, {D. R.} and T. Luntama and S. Maurice and Mccabe, {K. P.} and K. Mursula and Narheim, {B. T.} and Nordholt, {J. E.} and A. Preece and J. Rudzki and A. Ruitberg and K. Smith and S. Szalai and Thomsen, {M. F.} and Kai Viherkanto and J. Vilppola and T. Vollmer and Wahl, {T. E.} and M. W{\"u}est and Tomi Ylikorpi and C. Zinsmeyer",
    year = "2004",
    month = "12",
    day = "1",
    doi = "10.1007/s11214-004-1406-4",
    language = "English",
    volume = "114",
    pages = "1--112",
    journal = "Space Science Reviews",
    issn = "0038-6308",
    publisher = "Springer",
    number = "1-4",

    }

    Young, DT, Berthelier, JJ, Blanc, M, Burch, JL, Coates, AJ, Goldstein, R, Grande, M, Hill, TW, Johnson, RE, Kelha, V, Mccomas, DJ, Sittler, EC, Svenes, KR, Szegö, K, Tanskanen, P, Ahola, K, Anderson, D, Bakshi, S, Baragiola, RA, Barraclough, BL, Black, RK, Bolton, S, Booker, T, Bowman, R, Casey, P, Crary, FJ, Delapp, D, Dirks, G, Eaker, N, Funsten, H, Furman, JD, Gosling, JT, Hannula, H, Holmlund, C, Huomo, H, Illiano, JM, Jensen, P, Johnson, MA, Linder, DR, Luntama, T, Maurice, S, Mccabe, KP, Mursula, K, Narheim, BT, Nordholt, JE, Preece, A, Rudzki, J, Ruitberg, A, Smith, K, Szalai, S, Thomsen, MF, Viherkanto, K, Vilppola, J, Vollmer, T, Wahl, TE, Wüest, M, Ylikorpi, T & Zinsmeyer, C 2004, 'Cassini plasma spectrometer investigation', Space Science Reviews, vol. 114, no. 1-4, pp. 1-112. https://doi.org/10.1007/s11214-004-1406-4

    Cassini plasma spectrometer investigation. / Young, D. T.; Berthelier, J. J.; Blanc, M.; Burch, J. L.; Coates, A. J.; Goldstein, R.; Grande, M.; Hill, T. W.; Johnson, R. E.; Kelha, Väinö; Mccomas, D. J.; Sittler, E. C.; Svenes, K. R.; Szegö, K.; Tanskanen, P.; Ahola, Kimmo; Anderson, D.; Bakshi, S.; Baragiola, R. A.; Barraclough, B. L.; Black, R. K.; Bolton, S.; Booker, T.; Bowman, R.; Casey, P.; Crary, F. J.; Delapp, D.; Dirks, G.; Eaker, N.; Funsten, H.; Furman, J. D.; Gosling, J. T.; Hannula, H.; Holmlund, Christer; Huomo, H.; Illiano, J. M.; Jensen, P.; Johnson, M. A.; Linder, D. R.; Luntama, T.; Maurice, S.; Mccabe, K. P.; Mursula, K.; Narheim, B. T.; Nordholt, J. E.; Preece, A.; Rudzki, J.; Ruitberg, A.; Smith, K.; Szalai, S.; Thomsen, M. F.; Viherkanto, Kai; Vilppola, J.; Vollmer, T.; Wahl, T. E.; Wüest, M.; Ylikorpi, Tomi; Zinsmeyer, C.

    In: Space Science Reviews, Vol. 114, No. 1-4, 01.12.2004, p. 1-112.

    Research output: Contribution to journalArticleScientificpeer-review

    TY - JOUR

    T1 - Cassini plasma spectrometer investigation

    AU - Young, D. T.

    AU - Berthelier, J. J.

    AU - Blanc, M.

    AU - Burch, J. L.

    AU - Coates, A. J.

    AU - Goldstein, R.

    AU - Grande, M.

    AU - Hill, T. W.

    AU - Johnson, R. E.

    AU - Kelha, Väinö

    AU - Mccomas, D. J.

    AU - Sittler, E. C.

    AU - Svenes, K. R.

    AU - Szegö, K.

    AU - Tanskanen, P.

    AU - Ahola, Kimmo

    AU - Anderson, D.

    AU - Bakshi, S.

    AU - Baragiola, R. A.

    AU - Barraclough, B. L.

    AU - Black, R. K.

    AU - Bolton, S.

    AU - Booker, T.

    AU - Bowman, R.

    AU - Casey, P.

    AU - Crary, F. J.

    AU - Delapp, D.

    AU - Dirks, G.

    AU - Eaker, N.

    AU - Funsten, H.

    AU - Furman, J. D.

    AU - Gosling, J. T.

    AU - Hannula, H.

    AU - Holmlund, Christer

    AU - Huomo, H.

    AU - Illiano, J. M.

    AU - Jensen, P.

    AU - Johnson, M. A.

    AU - Linder, D. R.

    AU - Luntama, T.

    AU - Maurice, S.

    AU - Mccabe, K. P.

    AU - Mursula, K.

    AU - Narheim, B. T.

    AU - Nordholt, J. E.

    AU - Preece, A.

    AU - Rudzki, J.

    AU - Ruitberg, A.

    AU - Smith, K.

    AU - Szalai, S.

    AU - Thomsen, M. F.

    AU - Viherkanto, Kai

    AU - Vilppola, J.

    AU - Vollmer, T.

    AU - Wahl, T. E.

    AU - Wüest, M.

    AU - Ylikorpi, Tomi

    AU - Zinsmeyer, C.

    PY - 2004/12/1

    Y1 - 2004/12/1

    N2 - The Cassini Plasma Spectrometer (CAPS) will make comprehensive three-dimensional mass-resolved measurements of the full variety of plasma phenomena found in Saturn's magnetosphere. Our fundamental scientific goals are to understand the nature of saturnian plasmas primarily their sources of ionization, and the means by which they are accelerated, transported, and lost. In so doing the CAPS investigation will contribute to understanding Saturn's magnetosphere and its complex interactions with Titan, the icy satellites and rings, Saturn's ionosphere and aurora, and the solar wind. Our design approach meets these goals by emphasizing two complementary types of measurements: high-time resolution velocity distributions of electrons and all major ion species; and lower-time resolution, high-mass resolution spectra of all ion species. The CAPS instrument is made up of three sensors: the Electron Spectrometer (ELS), the Ion Beam Spectrometer (IBS), and the Ion Mass Spectrometer (IMS). The ELS measures the velocity distribution of electrons from 0.6 eV to 28,250 keV, a range that permits coverage of thermal electrons found at Titan and near the ring plane as well as more energetic trapped electrons and auroral particles. The IBS measures ion velocity distributions with very high angular and energy resolution from 1 eV to 49,800 keV. It is specially designed to measure sharply defined ion beams expected in the solar wind at 9.5 AU, highly directional rammed ion fluxes encountered in Titan's ionosphere, and anticipated field-aligned auroral fluxes. The IMS is designed to measure the composition of hot, diffuse magnetospheric plasmas and low-concentration ion species 1 eV to 50,280 eV with an atomic resolution M/ΔM ∼70 and, for certain molecules, (such asN 2 + and CO+), effective resolution as high as ∼2500. The three sensors are mounted on a motor-driven actuator that rotates the entire instrument over approximately one-half of the sky every 3 min.

    AB - The Cassini Plasma Spectrometer (CAPS) will make comprehensive three-dimensional mass-resolved measurements of the full variety of plasma phenomena found in Saturn's magnetosphere. Our fundamental scientific goals are to understand the nature of saturnian plasmas primarily their sources of ionization, and the means by which they are accelerated, transported, and lost. In so doing the CAPS investigation will contribute to understanding Saturn's magnetosphere and its complex interactions with Titan, the icy satellites and rings, Saturn's ionosphere and aurora, and the solar wind. Our design approach meets these goals by emphasizing two complementary types of measurements: high-time resolution velocity distributions of electrons and all major ion species; and lower-time resolution, high-mass resolution spectra of all ion species. The CAPS instrument is made up of three sensors: the Electron Spectrometer (ELS), the Ion Beam Spectrometer (IBS), and the Ion Mass Spectrometer (IMS). The ELS measures the velocity distribution of electrons from 0.6 eV to 28,250 keV, a range that permits coverage of thermal electrons found at Titan and near the ring plane as well as more energetic trapped electrons and auroral particles. The IBS measures ion velocity distributions with very high angular and energy resolution from 1 eV to 49,800 keV. It is specially designed to measure sharply defined ion beams expected in the solar wind at 9.5 AU, highly directional rammed ion fluxes encountered in Titan's ionosphere, and anticipated field-aligned auroral fluxes. The IMS is designed to measure the composition of hot, diffuse magnetospheric plasmas and low-concentration ion species 1 eV to 50,280 eV with an atomic resolution M/ΔM ∼70 and, for certain molecules, (such asN 2 + and CO+), effective resolution as high as ∼2500. The three sensors are mounted on a motor-driven actuator that rotates the entire instrument over approximately one-half of the sky every 3 min.

    KW - Ion composition

    KW - Magnetosphere

    KW - Saturn

    KW - Space plasma

    KW - Titan

    U2 - 10.1007/s11214-004-1406-4

    DO - 10.1007/s11214-004-1406-4

    M3 - Article

    AN - SCOPUS:20144389909

    VL - 114

    SP - 1

    EP - 112

    JO - Space Science Reviews

    JF - Space Science Reviews

    SN - 0038-6308

    IS - 1-4

    ER -

    Young DT, Berthelier JJ, Blanc M, Burch JL, Coates AJ, Goldstein R et al. Cassini plasma spectrometer investigation. Space Science Reviews. 2004 Dec 1;114(1-4):1-112. https://doi.org/10.1007/s11214-004-1406-4