Cassini plasma spectrometer investigation

D. T. Young, J. J. Berthelier, M. Blanc, J. L. Burch, A. J. Coates, R. Goldstein, M. Grande, T. W. Hill, R. E. Johnson, V. Kelha, D. J. Mccomas, E. C. Sittler, K. R. Svenes, K. Szegö, P. Tanskanen, K. Ahola, D. Anderson, S. Bakshi, R. A. Baragiola, B. L. Barraclough & 38 others R. K. Black, S. Bolton, T. Booker, R. Bowman, P. Casey, F. J. Crary, D. Delapp, G. Dirks, N. Eaker, H. Funsten, J. D. Furman, J. T. Gosling, H. Hannula, C. Holmlund, H. Huomo, J. M. Illiano, P. Jensen, M. A. Johnson, D. R. Linder, T. Luntama, S. Maurice, K. P. Mccabe, K. Mursula, B. T. Narheim, J. E. Nordholt, A. Preece, J. Rudzki, A. Ruitberg, K. Smith, S. Szalai, M. F. Thomsen, K. Viherkanto, J. Vilppola, T. Vollmer, T. E. Wahl, M. Wüest, T. Ylikorpi, C. Zinsmeyer

Research output: Contribution to journalArticleScientificpeer-review

365 Citations (Scopus)

Abstract

The Cassini Plasma Spectrometer (CAPS) will make comprehensive three-dimensional mass-resolved measurements of the full variety of plasma phenomena found in Saturn's magnetosphere. Our fundamental scientific goals are to understand the nature of saturnian plasmas primarily their sources of ionization, and the means by which they are accelerated, transported, and lost. In so doing the CAPS investigation will contribute to understanding Saturn's magnetosphere and its complex interactions with Titan, the icy satellites and rings, Saturn's ionosphere and aurora, and the solar wind. Our design approach meets these goals by emphasizing two complementary types of measurements: high-time resolution velocity distributions of electrons and all major ion species; and lower-time resolution, high-mass resolution spectra of all ion species. The CAPS instrument is made up of three sensors: the Electron Spectrometer (ELS), the Ion Beam Spectrometer (IBS), and the Ion Mass Spectrometer (IMS). The ELS measures the velocity distribution of electrons from 0.6 eV to 28,250 keV, a range that permits coverage of thermal electrons found at Titan and near the ring plane as well as more energetic trapped electrons and auroral particles. The IBS measures ion velocity distributions with very high angular and energy resolution from 1 eV to 49,800 keV. It is specially designed to measure sharply defined ion beams expected in the solar wind at 9.5 AU, highly directional rammed ion fluxes encountered in Titan's ionosphere, and anticipated field-aligned auroral fluxes. The IMS is designed to measure the composition of hot, diffuse magnetospheric plasmas and low-concentration ion species 1 eV to 50,280 eV with an atomic resolution M/ΔM ∼70 and, for certain molecules, (such asN 2 + and CO+), effective resolution as high as ∼2500. The three sensors are mounted on a motor-driven actuator that rotates the entire instrument over approximately one-half of the sky every 3 min.

Original languageEnglish
Pages (from-to)1-112
Number of pages112
JournalSpace Science Reviews
Volume114
Issue number1-4
DOIs
Publication statusPublished - 1 Dec 2004
MoE publication typeNot Eligible

Fingerprint

spectrometer
spectrometers
plasma
ion
mass spectrometers
Titan
electron
electrons
velocity distribution
ion beams
Saturn
ions
magnetospheres
ionospheres
solar wind
icy satellites
Saturn rings
magnetosphere
ionosphere
high resolution

Keywords

  • Ion composition
  • Magnetosphere
  • Saturn
  • Space plasma
  • Titan

Cite this

Young, D. T., Berthelier, J. J., Blanc, M., Burch, J. L., Coates, A. J., Goldstein, R., ... Zinsmeyer, C. (2004). Cassini plasma spectrometer investigation. Space Science Reviews, 114(1-4), 1-112. https://doi.org/10.1007/s11214-004-1406-4
Young, D. T. ; Berthelier, J. J. ; Blanc, M. ; Burch, J. L. ; Coates, A. J. ; Goldstein, R. ; Grande, M. ; Hill, T. W. ; Johnson, R. E. ; Kelha, V. ; Mccomas, D. J. ; Sittler, E. C. ; Svenes, K. R. ; Szegö, K. ; Tanskanen, P. ; Ahola, K. ; Anderson, D. ; Bakshi, S. ; Baragiola, R. A. ; Barraclough, B. L. ; Black, R. K. ; Bolton, S. ; Booker, T. ; Bowman, R. ; Casey, P. ; Crary, F. J. ; Delapp, D. ; Dirks, G. ; Eaker, N. ; Funsten, H. ; Furman, J. D. ; Gosling, J. T. ; Hannula, H. ; Holmlund, C. ; Huomo, H. ; Illiano, J. M. ; Jensen, P. ; Johnson, M. A. ; Linder, D. R. ; Luntama, T. ; Maurice, S. ; Mccabe, K. P. ; Mursula, K. ; Narheim, B. T. ; Nordholt, J. E. ; Preece, A. ; Rudzki, J. ; Ruitberg, A. ; Smith, K. ; Szalai, S. ; Thomsen, M. F. ; Viherkanto, K. ; Vilppola, J. ; Vollmer, T. ; Wahl, T. E. ; Wüest, M. ; Ylikorpi, T. ; Zinsmeyer, C. / Cassini plasma spectrometer investigation. In: Space Science Reviews. 2004 ; Vol. 114, No. 1-4. pp. 1-112.
@article{a59a9f8c146849fc9e68d02d6f574196,
title = "Cassini plasma spectrometer investigation",
abstract = "The Cassini Plasma Spectrometer (CAPS) will make comprehensive three-dimensional mass-resolved measurements of the full variety of plasma phenomena found in Saturn's magnetosphere. Our fundamental scientific goals are to understand the nature of saturnian plasmas primarily their sources of ionization, and the means by which they are accelerated, transported, and lost. In so doing the CAPS investigation will contribute to understanding Saturn's magnetosphere and its complex interactions with Titan, the icy satellites and rings, Saturn's ionosphere and aurora, and the solar wind. Our design approach meets these goals by emphasizing two complementary types of measurements: high-time resolution velocity distributions of electrons and all major ion species; and lower-time resolution, high-mass resolution spectra of all ion species. The CAPS instrument is made up of three sensors: the Electron Spectrometer (ELS), the Ion Beam Spectrometer (IBS), and the Ion Mass Spectrometer (IMS). The ELS measures the velocity distribution of electrons from 0.6 eV to 28,250 keV, a range that permits coverage of thermal electrons found at Titan and near the ring plane as well as more energetic trapped electrons and auroral particles. The IBS measures ion velocity distributions with very high angular and energy resolution from 1 eV to 49,800 keV. It is specially designed to measure sharply defined ion beams expected in the solar wind at 9.5 AU, highly directional rammed ion fluxes encountered in Titan's ionosphere, and anticipated field-aligned auroral fluxes. The IMS is designed to measure the composition of hot, diffuse magnetospheric plasmas and low-concentration ion species 1 eV to 50,280 eV with an atomic resolution M/ΔM ∼70 and, for certain molecules, (such asN 2 + and CO+), effective resolution as high as ∼2500. The three sensors are mounted on a motor-driven actuator that rotates the entire instrument over approximately one-half of the sky every 3 min.",
keywords = "Ion composition, Magnetosphere, Saturn, Space plasma, Titan",
author = "Young, {D. T.} and Berthelier, {J. J.} and M. Blanc and Burch, {J. L.} and Coates, {A. J.} and R. Goldstein and M. Grande and Hill, {T. W.} and Johnson, {R. E.} and V. Kelha and Mccomas, {D. J.} and Sittler, {E. C.} and Svenes, {K. R.} and K. Szeg{\"o} and P. Tanskanen and K. Ahola and D. Anderson and S. Bakshi and Baragiola, {R. A.} and Barraclough, {B. L.} and Black, {R. K.} and S. Bolton and T. Booker and R. Bowman and P. Casey and Crary, {F. J.} and D. Delapp and G. Dirks and N. Eaker and H. Funsten and Furman, {J. D.} and Gosling, {J. T.} and H. Hannula and C. Holmlund and H. Huomo and Illiano, {J. M.} and P. Jensen and Johnson, {M. A.} and Linder, {D. R.} and T. Luntama and S. Maurice and Mccabe, {K. P.} and K. Mursula and Narheim, {B. T.} and Nordholt, {J. E.} and A. Preece and J. Rudzki and A. Ruitberg and K. Smith and S. Szalai and Thomsen, {M. F.} and K. Viherkanto and J. Vilppola and T. Vollmer and Wahl, {T. E.} and M. W{\"u}est and T. Ylikorpi and C. Zinsmeyer",
year = "2004",
month = "12",
day = "1",
doi = "10.1007/s11214-004-1406-4",
language = "English",
volume = "114",
pages = "1--112",
journal = "Space Science Reviews",
issn = "0038-6308",
publisher = "Springer",
number = "1-4",

}

Young, DT, Berthelier, JJ, Blanc, M, Burch, JL, Coates, AJ, Goldstein, R, Grande, M, Hill, TW, Johnson, RE, Kelha, V, Mccomas, DJ, Sittler, EC, Svenes, KR, Szegö, K, Tanskanen, P, Ahola, K, Anderson, D, Bakshi, S, Baragiola, RA, Barraclough, BL, Black, RK, Bolton, S, Booker, T, Bowman, R, Casey, P, Crary, FJ, Delapp, D, Dirks, G, Eaker, N, Funsten, H, Furman, JD, Gosling, JT, Hannula, H, Holmlund, C, Huomo, H, Illiano, JM, Jensen, P, Johnson, MA, Linder, DR, Luntama, T, Maurice, S, Mccabe, KP, Mursula, K, Narheim, BT, Nordholt, JE, Preece, A, Rudzki, J, Ruitberg, A, Smith, K, Szalai, S, Thomsen, MF, Viherkanto, K, Vilppola, J, Vollmer, T, Wahl, TE, Wüest, M, Ylikorpi, T & Zinsmeyer, C 2004, 'Cassini plasma spectrometer investigation', Space Science Reviews, vol. 114, no. 1-4, pp. 1-112. https://doi.org/10.1007/s11214-004-1406-4

Cassini plasma spectrometer investigation. / Young, D. T.; Berthelier, J. J.; Blanc, M.; Burch, J. L.; Coates, A. J.; Goldstein, R.; Grande, M.; Hill, T. W.; Johnson, R. E.; Kelha, V.; Mccomas, D. J.; Sittler, E. C.; Svenes, K. R.; Szegö, K.; Tanskanen, P.; Ahola, K.; Anderson, D.; Bakshi, S.; Baragiola, R. A.; Barraclough, B. L.; Black, R. K.; Bolton, S.; Booker, T.; Bowman, R.; Casey, P.; Crary, F. J.; Delapp, D.; Dirks, G.; Eaker, N.; Funsten, H.; Furman, J. D.; Gosling, J. T.; Hannula, H.; Holmlund, C.; Huomo, H.; Illiano, J. M.; Jensen, P.; Johnson, M. A.; Linder, D. R.; Luntama, T.; Maurice, S.; Mccabe, K. P.; Mursula, K.; Narheim, B. T.; Nordholt, J. E.; Preece, A.; Rudzki, J.; Ruitberg, A.; Smith, K.; Szalai, S.; Thomsen, M. F.; Viherkanto, K.; Vilppola, J.; Vollmer, T.; Wahl, T. E.; Wüest, M.; Ylikorpi, T.; Zinsmeyer, C.

In: Space Science Reviews, Vol. 114, No. 1-4, 01.12.2004, p. 1-112.

Research output: Contribution to journalArticleScientificpeer-review

TY - JOUR

T1 - Cassini plasma spectrometer investigation

AU - Young, D. T.

AU - Berthelier, J. J.

AU - Blanc, M.

AU - Burch, J. L.

AU - Coates, A. J.

AU - Goldstein, R.

AU - Grande, M.

AU - Hill, T. W.

AU - Johnson, R. E.

AU - Kelha, V.

AU - Mccomas, D. J.

AU - Sittler, E. C.

AU - Svenes, K. R.

AU - Szegö, K.

AU - Tanskanen, P.

AU - Ahola, K.

AU - Anderson, D.

AU - Bakshi, S.

AU - Baragiola, R. A.

AU - Barraclough, B. L.

AU - Black, R. K.

AU - Bolton, S.

AU - Booker, T.

AU - Bowman, R.

AU - Casey, P.

AU - Crary, F. J.

AU - Delapp, D.

AU - Dirks, G.

AU - Eaker, N.

AU - Funsten, H.

AU - Furman, J. D.

AU - Gosling, J. T.

AU - Hannula, H.

AU - Holmlund, C.

AU - Huomo, H.

AU - Illiano, J. M.

AU - Jensen, P.

AU - Johnson, M. A.

AU - Linder, D. R.

AU - Luntama, T.

AU - Maurice, S.

AU - Mccabe, K. P.

AU - Mursula, K.

AU - Narheim, B. T.

AU - Nordholt, J. E.

AU - Preece, A.

AU - Rudzki, J.

AU - Ruitberg, A.

AU - Smith, K.

AU - Szalai, S.

AU - Thomsen, M. F.

AU - Viherkanto, K.

AU - Vilppola, J.

AU - Vollmer, T.

AU - Wahl, T. E.

AU - Wüest, M.

AU - Ylikorpi, T.

AU - Zinsmeyer, C.

PY - 2004/12/1

Y1 - 2004/12/1

N2 - The Cassini Plasma Spectrometer (CAPS) will make comprehensive three-dimensional mass-resolved measurements of the full variety of plasma phenomena found in Saturn's magnetosphere. Our fundamental scientific goals are to understand the nature of saturnian plasmas primarily their sources of ionization, and the means by which they are accelerated, transported, and lost. In so doing the CAPS investigation will contribute to understanding Saturn's magnetosphere and its complex interactions with Titan, the icy satellites and rings, Saturn's ionosphere and aurora, and the solar wind. Our design approach meets these goals by emphasizing two complementary types of measurements: high-time resolution velocity distributions of electrons and all major ion species; and lower-time resolution, high-mass resolution spectra of all ion species. The CAPS instrument is made up of three sensors: the Electron Spectrometer (ELS), the Ion Beam Spectrometer (IBS), and the Ion Mass Spectrometer (IMS). The ELS measures the velocity distribution of electrons from 0.6 eV to 28,250 keV, a range that permits coverage of thermal electrons found at Titan and near the ring plane as well as more energetic trapped electrons and auroral particles. The IBS measures ion velocity distributions with very high angular and energy resolution from 1 eV to 49,800 keV. It is specially designed to measure sharply defined ion beams expected in the solar wind at 9.5 AU, highly directional rammed ion fluxes encountered in Titan's ionosphere, and anticipated field-aligned auroral fluxes. The IMS is designed to measure the composition of hot, diffuse magnetospheric plasmas and low-concentration ion species 1 eV to 50,280 eV with an atomic resolution M/ΔM ∼70 and, for certain molecules, (such asN 2 + and CO+), effective resolution as high as ∼2500. The three sensors are mounted on a motor-driven actuator that rotates the entire instrument over approximately one-half of the sky every 3 min.

AB - The Cassini Plasma Spectrometer (CAPS) will make comprehensive three-dimensional mass-resolved measurements of the full variety of plasma phenomena found in Saturn's magnetosphere. Our fundamental scientific goals are to understand the nature of saturnian plasmas primarily their sources of ionization, and the means by which they are accelerated, transported, and lost. In so doing the CAPS investigation will contribute to understanding Saturn's magnetosphere and its complex interactions with Titan, the icy satellites and rings, Saturn's ionosphere and aurora, and the solar wind. Our design approach meets these goals by emphasizing two complementary types of measurements: high-time resolution velocity distributions of electrons and all major ion species; and lower-time resolution, high-mass resolution spectra of all ion species. The CAPS instrument is made up of three sensors: the Electron Spectrometer (ELS), the Ion Beam Spectrometer (IBS), and the Ion Mass Spectrometer (IMS). The ELS measures the velocity distribution of electrons from 0.6 eV to 28,250 keV, a range that permits coverage of thermal electrons found at Titan and near the ring plane as well as more energetic trapped electrons and auroral particles. The IBS measures ion velocity distributions with very high angular and energy resolution from 1 eV to 49,800 keV. It is specially designed to measure sharply defined ion beams expected in the solar wind at 9.5 AU, highly directional rammed ion fluxes encountered in Titan's ionosphere, and anticipated field-aligned auroral fluxes. The IMS is designed to measure the composition of hot, diffuse magnetospheric plasmas and low-concentration ion species 1 eV to 50,280 eV with an atomic resolution M/ΔM ∼70 and, for certain molecules, (such asN 2 + and CO+), effective resolution as high as ∼2500. The three sensors are mounted on a motor-driven actuator that rotates the entire instrument over approximately one-half of the sky every 3 min.

KW - Ion composition

KW - Magnetosphere

KW - Saturn

KW - Space plasma

KW - Titan

U2 - 10.1007/s11214-004-1406-4

DO - 10.1007/s11214-004-1406-4

M3 - Article

VL - 114

SP - 1

EP - 112

JO - Space Science Reviews

JF - Space Science Reviews

SN - 0038-6308

IS - 1-4

ER -

Young DT, Berthelier JJ, Blanc M, Burch JL, Coates AJ, Goldstein R et al. Cassini plasma spectrometer investigation. Space Science Reviews. 2004 Dec 1;114(1-4):1-112. https://doi.org/10.1007/s11214-004-1406-4