TY - JOUR
T1 - Catalytic Processing of Mixed Plastics Aiming for Industrial Reuse
AU - Lindfors, Christian
AU - Khan, Muhammad
AU - Siddiq, Farah
AU - Arnold, Mona
AU - Ohra-Aho, Taina
N1 - Publisher Copyright:
© 2024 American Chemical Society.
PY - 2024/5/2
Y1 - 2024/5/2
N2 - The significant surge in global plastic waste has fundamentally shifted the traditional perceptions of plastic as a material. This shift can largely be attributed to established linear economy practices. While plastics offer numerous advantages, their postuse management has been grossly overlooked, resulting in ubiquitous plastic waste. In a circular economy framework for plastics, it is essential to methodically collect and recycle waste, rejuvenating the material for reuse. In this research, a model mixture of polymers, simulating household plastic waste, underwent thermochemical conversion to pyrolysis oil, priming it for the creation of new plastic products. Pyrolysis experiments utilized a bench-scale continuous fluidized bed reactor, employing various slags from the aluminum and steel industries as catalysts. All slags reduced the halogen content in the pyrolysis oil by 90 w/w% compared to the noncatalytic variant. Specifically, red mud further cracked the wax into lighter hydrocarbons, which is more suitable as a feed in the refinery. In parallel to the pyrolysis work, hydrotreatment experiments were conducted in a fixed bed reactor with the noncatalytic pyrolysis oil using 0.5 w/w% Pd/Al2O3 and 78 w/w% NiO/Al2O3 as catalysts to evaluate the halogen removal. Results indicated that the halogen content obtained by hydrotreatment was at the same level as that in the catalytic pyrolysis.
AB - The significant surge in global plastic waste has fundamentally shifted the traditional perceptions of plastic as a material. This shift can largely be attributed to established linear economy practices. While plastics offer numerous advantages, their postuse management has been grossly overlooked, resulting in ubiquitous plastic waste. In a circular economy framework for plastics, it is essential to methodically collect and recycle waste, rejuvenating the material for reuse. In this research, a model mixture of polymers, simulating household plastic waste, underwent thermochemical conversion to pyrolysis oil, priming it for the creation of new plastic products. Pyrolysis experiments utilized a bench-scale continuous fluidized bed reactor, employing various slags from the aluminum and steel industries as catalysts. All slags reduced the halogen content in the pyrolysis oil by 90 w/w% compared to the noncatalytic variant. Specifically, red mud further cracked the wax into lighter hydrocarbons, which is more suitable as a feed in the refinery. In parallel to the pyrolysis work, hydrotreatment experiments were conducted in a fixed bed reactor with the noncatalytic pyrolysis oil using 0.5 w/w% Pd/Al2O3 and 78 w/w% NiO/Al2O3 as catalysts to evaluate the halogen removal. Results indicated that the halogen content obtained by hydrotreatment was at the same level as that in the catalytic pyrolysis.
UR - http://www.scopus.com/inward/record.url?scp=85190748210&partnerID=8YFLogxK
U2 - 10.1021/acs.energyfuels.3c05108
DO - 10.1021/acs.energyfuels.3c05108
M3 - Article
AN - SCOPUS:85190748210
SN - 0887-0624
VL - 38
SP - 8009
EP - 8020
JO - Energy and Fuels
JF - Energy and Fuels
IS - 9
ER -