Abstract
Melanocarpus albomyces steryl esterase STE1 is considered to be an interesting tool for several industrial applications due to its broad substrate specificity. STE1 was produced in the filamentous fungus Trichoderma reesei in a laboratory bioreactor at an estimated production level of 280 mg l−l. The properties of the purified recombinant enzyme (rSTE1), such as substrate specificity, molecular mass, pH optimum and stability and thermostability, were characterized and compared to the corresponding properties of the native enzyme. Sodium dodecyl sulphate-polyacrylamide gel electrophoresis showed one band with a molecular weight of 60 kDa for rSTE1, whereas analytical gel filtration showed a dimeric structure with a molecular weight of 120 kDa. The rSTE1 was somewhat less stable under different conditions and had slightly lower activities on various substrates than the native STE1. The effects of rSTE1 on the properties of paper sheets and polyethylene terephthalate (PET) fabric were preliminarily evaluated. Due to the hydrolysis of triglycerides and steryl esters by the rSTE1 treatment, the tensile strength and hydrophilicity of the paper were increased. The rSTE1 treatment increased significantly the polarity of PET by hydrolysing the ester bonds in the polyester backbone. Dyeing of PET with methylene blue was also slightly improved after rSTE1 treatment.
Original language | English |
---|---|
Pages (from-to) | 696-704 |
Number of pages | 9 |
Journal | Applied Microbiology and Biotechnology |
Volume | 72 |
Issue number | 4 |
DOIs | |
Publication status | Published - 2006 |
MoE publication type | A1 Journal article-refereed |
Keywords
- Melanocarpus albomyces
- steryl esterase
- paper
- hydrolysis
- enzymes