Characterization of nucleic acids from extracellular vesicle-enriched human sweat

Geneviève Bart, Daniel Fischer, Anatoliy Samoylenko, Artem Zhyvolozhnyi, Pavlo Stehantsev, Ilkka Miinalainen, Mika Kaakinen, Tuomas Nurmi, Prateek Singh, Susanna Kosamo, Lauri Rannaste, Sirja Viitala, Jussi Hiltunen, Seppo J. Vainio (Corresponding Author)

Research output: Contribution to journalArticleScientificpeer-review

24 Citations (Scopus)
83 Downloads (Pure)

Abstract

Background: The human sweat is a mixture of secretions from three types of glands: eccrine, apocrine, and sebaceous. Eccrine glands open directly on the skin surface and produce high amounts of water-based fluid in response to heat, emotion, and physical activity, whereas the other glands produce oily fluids and waxy sebum. While most body fluids have been shown to contain nucleic acids, both as ribonucleoprotein complexes and associated with extracellular vesicles (EVs), these have not been investigated in sweat. In this study we aimed to explore and characterize the nucleic acids associated with sweat particles. Results: We used next generation sequencing (NGS) to characterize DNA and RNA in pooled and individual samples of EV-enriched sweat collected from volunteers performing rigorous exercise. In all sequenced samples, we identified DNA originating from all human chromosomes, but only the mitochondrial chromosome was highly represented with 100% coverage. Most of the DNA mapped to unannotated regions of the human genome with some regions highly represented in all samples. Approximately 5 % of the reads were found to map to other genomes: including bacteria (83%), archaea (3%), and virus (13%), identified bacteria species were consistent with those commonly colonizing the human upper body and arm skin. Small RNA-seq from EV-enriched pooled sweat RNA resulted in 74% of the trimmed reads mapped to the human genome, with 29% corresponding to unannotated regions. Over 70% of the RNA reads mapping to an annotated region were tRNA, while misc. RNA (18,5%), protein coding RNA (5%) and miRNA (1,85%) were much less represented. RNA-seq from individually processed EV-enriched sweat collection generally resulted in fewer percentage of reads mapping to the human genome (7–45%), with 50–60% of those reads mapping to unannotated region of the genome and 30–55% being tRNAs, and lower percentage of reads being rRNA, LincRNA, misc. RNA, and protein coding RNA. Conclusions: Our data demonstrates that sweat, as all other body fluids, contains a wealth of nucleic acids, including DNA and RNA of human and microbial origin, opening a possibility to investigate sweat as a source for biomarkers for specific health parameters.

Original languageEnglish
Article number425
Pages (from-to)425
Number of pages29
JournalBMC Genomics
Volume22
Issue number1
DOIs
Publication statusPublished - 9 Jun 2021
MoE publication typeA1 Journal article-refereed

Keywords

  • Exercise
  • Extracellular vesicles (EV)
  • Genomics
  • Metagenomics
  • Microbiome
  • Skin
  • Sweat
  • Transcriptomics

Fingerprint

Dive into the research topics of 'Characterization of nucleic acids from extracellular vesicle-enriched human sweat'. Together they form a unique fingerprint.

Cite this