Characterization of xylanolytic enzymes for potential applications: Dissertation

Research output: ThesisDissertationCollection of Articles

Abstract

Xylans are heteropolysaccharides with a backbone consisting of 1,4 linked ß-D-xylopyranose units.Xylans are the major hemicellulose of hardwoods and annual plants, where together with cellulose and lignin they form the supporting material of the plant cell walls.In this study the enzymatic hydrolysis of xylans was shown to be influenced by the heterogeneous structure of the substrate.The role of individual xylan-degrading enzymes in the hydrolysis of xylans was studied using enzyme mixtures of different microbial origin and by purifying and characterizing xylanolytic enzymes of the fungus Trichoderma reesei.A steaming process was studied as a means of separating xylan from cellulose and lignin and as a pretreatment method prior to enzymatic hydrolysis of hardwood carbohydrates.Birchwood xylan was partially hydrolyzed during steaming and could subsequently be extracted with water.The steamed xylan was still acetylated and 4-0-methylglucurono-substituted.The high degree of substitution had a significant effect on further biotechnical conversions.Enzymes cleaving side groups from the xylan backbone were shown to act synergistically with endoxylanases and ß-xylosidase in the production of xylose.Hydrolysis of the steamed birchwood xylan was incomplete without esterases and ~-glucuronidase. ~-Arabinosidase was also needed in the hydrolysis of arabinoxylan.The capabilities of different hemicellulolytic microorganisms to produce these side group-cleaving enzymes varied considerably.Trichoderma reesei was superior to the other microorganisms tested in terms of both enzyme spectrum and activity levels.The high cellulolytic activity of T. reesei would be beneficial in applications requiring total hydrolysis, but makes this fungus an unsuitable enzyme producer for applications in which selective hydrolysis of xylan is required. Enzyme preparations produced by Aspergillus awamori, Streptomyces olivochromogenes and Bacillus subtilis were relatively free of cellulolytic activity and would be more suitable for removal or modification of the xylan in cellulose pulps.Preliminary characterization of the purified acetyl esterase and ~-arabinosidase and the partially purified ~-glucuronidase of T. reesei indicated that these side group cleaving enzymes can only act efficiently in synergism with the depolymerizing enzymes, and hence could not be used for modification of polysaccharides.The identi fication and separation of the different xylanolytic enzymes will facilitate further research on the roles of, and cooperation between, cellulolytic, hemicellulolytic and lignin degrading enzymes in the processing of lignocellulosic raw materials.
Original languageEnglish
QualificationDoctor Degree
Awarding Institution
  • Helsinki University of Technology
Award date19 May 1988
Place of PublicationEspoo
Publisher
Print ISBNs951-38-3145-0
Publication statusPublished - 1988
MoE publication typeG5 Doctoral dissertation (article)

Fingerprint

xylan
enzymes
Trichoderma reesei
hydrolysis
alpha-N-arabinofuranosidase
lignin
cellulose
steaming
enzymatic hydrolysis
Streptomyces olivochromogenes
hardwood
esterases
endo-1,4-beta-xylanase
Aspergillus awamori
material forms
microorganisms
fungi
arabinoxylan
synergism
xylose

Keywords

  • hemicelluloses
  • hydrolysis
  • enzymes

Cite this

Poutanen, Kaisa. / Characterization of xylanolytic enzymes for potential applications : Dissertation. Espoo : VTT Technical Research Centre of Finland, 1988. 115 p.
@phdthesis{4b0f14e0ad4f42b3a4a3299b50ba0098,
title = "Characterization of xylanolytic enzymes for potential applications: Dissertation",
abstract = "Xylans are heteropolysaccharides with a backbone consisting of 1,4 linked {\ss}-D-xylopyranose units.Xylans are the major hemicellulose of hardwoods and annual plants, where together with cellulose and lignin they form the supporting material of the plant cell walls.In this study the enzymatic hydrolysis of xylans was shown to be influenced by the heterogeneous structure of the substrate.The role of individual xylan-degrading enzymes in the hydrolysis of xylans was studied using enzyme mixtures of different microbial origin and by purifying and characterizing xylanolytic enzymes of the fungus Trichoderma reesei.A steaming process was studied as a means of separating xylan from cellulose and lignin and as a pretreatment method prior to enzymatic hydrolysis of hardwood carbohydrates.Birchwood xylan was partially hydrolyzed during steaming and could subsequently be extracted with water.The steamed xylan was still acetylated and 4-0-methylglucurono-substituted.The high degree of substitution had a significant effect on further biotechnical conversions.Enzymes cleaving side groups from the xylan backbone were shown to act synergistically with endoxylanases and {\ss}-xylosidase in the production of xylose.Hydrolysis of the steamed birchwood xylan was incomplete without esterases and ~-glucuronidase. ~-Arabinosidase was also needed in the hydrolysis of arabinoxylan.The capabilities of different hemicellulolytic microorganisms to produce these side group-cleaving enzymes varied considerably.Trichoderma reesei was superior to the other microorganisms tested in terms of both enzyme spectrum and activity levels.The high cellulolytic activity of T. reesei would be beneficial in applications requiring total hydrolysis, but makes this fungus an unsuitable enzyme producer for applications in which selective hydrolysis of xylan is required. Enzyme preparations produced by Aspergillus awamori, Streptomyces olivochromogenes and Bacillus subtilis were relatively free of cellulolytic activity and would be more suitable for removal or modification of the xylan in cellulose pulps.Preliminary characterization of the purified acetyl esterase and ~-arabinosidase and the partially purified ~-glucuronidase of T. reesei indicated that these side group cleaving enzymes can only act efficiently in synergism with the depolymerizing enzymes, and hence could not be used for modification of polysaccharides.The identi fication and separation of the different xylanolytic enzymes will facilitate further research on the roles of, and cooperation between, cellulolytic, hemicellulolytic and lignin degrading enzymes in the processing of lignocellulosic raw materials.",
keywords = "hemicelluloses, hydrolysis, enzymes",
author = "Kaisa Poutanen",
year = "1988",
language = "English",
isbn = "951-38-3145-0",
series = "Technical Research Centre of Finland. Publications",
publisher = "VTT Technical Research Centre of Finland",
number = "47",
address = "Finland",
school = "Helsinki University of Technology",

}

Poutanen, K 1988, 'Characterization of xylanolytic enzymes for potential applications: Dissertation', Doctor Degree, Helsinki University of Technology, Espoo.

Characterization of xylanolytic enzymes for potential applications : Dissertation. / Poutanen, Kaisa.

Espoo : VTT Technical Research Centre of Finland, 1988. 115 p.

Research output: ThesisDissertationCollection of Articles

TY - THES

T1 - Characterization of xylanolytic enzymes for potential applications

T2 - Dissertation

AU - Poutanen, Kaisa

PY - 1988

Y1 - 1988

N2 - Xylans are heteropolysaccharides with a backbone consisting of 1,4 linked ß-D-xylopyranose units.Xylans are the major hemicellulose of hardwoods and annual plants, where together with cellulose and lignin they form the supporting material of the plant cell walls.In this study the enzymatic hydrolysis of xylans was shown to be influenced by the heterogeneous structure of the substrate.The role of individual xylan-degrading enzymes in the hydrolysis of xylans was studied using enzyme mixtures of different microbial origin and by purifying and characterizing xylanolytic enzymes of the fungus Trichoderma reesei.A steaming process was studied as a means of separating xylan from cellulose and lignin and as a pretreatment method prior to enzymatic hydrolysis of hardwood carbohydrates.Birchwood xylan was partially hydrolyzed during steaming and could subsequently be extracted with water.The steamed xylan was still acetylated and 4-0-methylglucurono-substituted.The high degree of substitution had a significant effect on further biotechnical conversions.Enzymes cleaving side groups from the xylan backbone were shown to act synergistically with endoxylanases and ß-xylosidase in the production of xylose.Hydrolysis of the steamed birchwood xylan was incomplete without esterases and ~-glucuronidase. ~-Arabinosidase was also needed in the hydrolysis of arabinoxylan.The capabilities of different hemicellulolytic microorganisms to produce these side group-cleaving enzymes varied considerably.Trichoderma reesei was superior to the other microorganisms tested in terms of both enzyme spectrum and activity levels.The high cellulolytic activity of T. reesei would be beneficial in applications requiring total hydrolysis, but makes this fungus an unsuitable enzyme producer for applications in which selective hydrolysis of xylan is required. Enzyme preparations produced by Aspergillus awamori, Streptomyces olivochromogenes and Bacillus subtilis were relatively free of cellulolytic activity and would be more suitable for removal or modification of the xylan in cellulose pulps.Preliminary characterization of the purified acetyl esterase and ~-arabinosidase and the partially purified ~-glucuronidase of T. reesei indicated that these side group cleaving enzymes can only act efficiently in synergism with the depolymerizing enzymes, and hence could not be used for modification of polysaccharides.The identi fication and separation of the different xylanolytic enzymes will facilitate further research on the roles of, and cooperation between, cellulolytic, hemicellulolytic and lignin degrading enzymes in the processing of lignocellulosic raw materials.

AB - Xylans are heteropolysaccharides with a backbone consisting of 1,4 linked ß-D-xylopyranose units.Xylans are the major hemicellulose of hardwoods and annual plants, where together with cellulose and lignin they form the supporting material of the plant cell walls.In this study the enzymatic hydrolysis of xylans was shown to be influenced by the heterogeneous structure of the substrate.The role of individual xylan-degrading enzymes in the hydrolysis of xylans was studied using enzyme mixtures of different microbial origin and by purifying and characterizing xylanolytic enzymes of the fungus Trichoderma reesei.A steaming process was studied as a means of separating xylan from cellulose and lignin and as a pretreatment method prior to enzymatic hydrolysis of hardwood carbohydrates.Birchwood xylan was partially hydrolyzed during steaming and could subsequently be extracted with water.The steamed xylan was still acetylated and 4-0-methylglucurono-substituted.The high degree of substitution had a significant effect on further biotechnical conversions.Enzymes cleaving side groups from the xylan backbone were shown to act synergistically with endoxylanases and ß-xylosidase in the production of xylose.Hydrolysis of the steamed birchwood xylan was incomplete without esterases and ~-glucuronidase. ~-Arabinosidase was also needed in the hydrolysis of arabinoxylan.The capabilities of different hemicellulolytic microorganisms to produce these side group-cleaving enzymes varied considerably.Trichoderma reesei was superior to the other microorganisms tested in terms of both enzyme spectrum and activity levels.The high cellulolytic activity of T. reesei would be beneficial in applications requiring total hydrolysis, but makes this fungus an unsuitable enzyme producer for applications in which selective hydrolysis of xylan is required. Enzyme preparations produced by Aspergillus awamori, Streptomyces olivochromogenes and Bacillus subtilis were relatively free of cellulolytic activity and would be more suitable for removal or modification of the xylan in cellulose pulps.Preliminary characterization of the purified acetyl esterase and ~-arabinosidase and the partially purified ~-glucuronidase of T. reesei indicated that these side group cleaving enzymes can only act efficiently in synergism with the depolymerizing enzymes, and hence could not be used for modification of polysaccharides.The identi fication and separation of the different xylanolytic enzymes will facilitate further research on the roles of, and cooperation between, cellulolytic, hemicellulolytic and lignin degrading enzymes in the processing of lignocellulosic raw materials.

KW - hemicelluloses

KW - hydrolysis

KW - enzymes

M3 - Dissertation

SN - 951-38-3145-0

T3 - Technical Research Centre of Finland. Publications

PB - VTT Technical Research Centre of Finland

CY - Espoo

ER -

Poutanen K. Characterization of xylanolytic enzymes for potential applications: Dissertation. Espoo: VTT Technical Research Centre of Finland, 1988. 115 p.