Charged Small Molecule Binding to Membranes in MD Simulations Evaluated against NMR Experiments

Ricky Nencini, O. H. Samuli Ollila*

*Corresponding author for this work

Research output: Contribution to journalArticleScientificpeer-review

4 Citations (Scopus)

Abstract

Interactions of charged molecules with biomembranes regulate many of their biological activities, but their binding affinities to lipid bilayers are difficult to measure experimentally and model theoretically. Classical molecular dynamics (MD) simulations have the potential to capture the complex interactions determining how charged biomolecules interact with membranes, but systematic overbinding of sodium and calcium cations in standard MD simulations raises the question of how accurately force fields capture the interactions between lipid membranes and charged biomolecules. Here, we evaluate the binding of positively charged small molecules, etidocaine, and tetraphenylphosphonium to a phosphatidylcholine (POPC) lipid bilayer using the changes in lipid head-group order parameters. We observed that these molecules behave oppositely to calcium and sodium ions when binding to membranes: (i) their binding affinities are not overestimated by standard force field parameters, (ii) implicit inclusion of electronic polarizability increases their binding affinity, and (iii) they penetrate into the hydrophobic membrane core. Our results can be explained by distinct binding mechanisms of charged small molecules with hydrophobic moieties and monoatomic ions. The binding of the former is driven by hydrophobic effects, while the latter has direct electrostatic interactions with lipids. In addition to elucidating how different kinds of charged biomolecules bind to membranes, we deliver tools for further development of MD simulation parameters and methodology.

Original languageEnglish
Pages (from-to)6955-6963
Number of pages9
JournalJournal of Physical Chemistry B
Volume126
Issue number36
DOIs
Publication statusPublished - 15 Sept 2022
MoE publication typeA1 Journal article-refereed

Fingerprint

Dive into the research topics of 'Charged Small Molecule Binding to Membranes in MD Simulations Evaluated against NMR Experiments'. Together they form a unique fingerprint.

Cite this