Conformality in atomic layer deposition

Current status overview of analysis and modelling

Véronique Cremers (Corresponding Author), Riikka L. Puurunen, Jolien Dendooven

Research output: Contribution to journalReview ArticleScientificpeer-review

5 Citations (Scopus)

Abstract

Atomic layer deposition (ALD) relies on alternated, self-limiting reactions between gaseous reactants and an exposed solid surface to deposit highly conformal coatings with a thickness controlled at the submonolayer level. These advantages have rendered ALD a mainstream technique in microelectronics and have triggered growing interest in ALD for a variety of nanotechnology applications, including energy technologies. Often, the choice for ALD is related to the need for a conformal coating on a 3D nanostructured surface, making the conformality of ALD processes a key factor in actual applications. In this work, we aim to review the current status of knowledge about the conformality of ALD processes. We describe the basic concepts related to the conformality of ALD, including an overview of relevant gas transport regimes, definitions of exposure and sticking probability, and a distinction between different ALD growth types observed in high aspect ratio structures. In addition, aiming for a more standardized and direct comparison of reported results concerning the conformality of ALD processes, we propose a new concept, Equivalent Aspect Ratio (EAR), to describe 3D substrates and introduce standard ways to express thin film conformality. Other than the conventional aspect ratio, the EAR provides a measure for the ease of coatability by referring to a cylindrical hole as the reference structure. The different types of high aspect ratio structures and characterization approaches that have been used for quantifying the conformality of ALD processes are reviewed. The published experimental data on the conformality of thermal, plasma-enhanced, and ozone-based ALD processes are tabulated and discussed. Besides discussing the experimental results of conformality of ALD, we will also give an overview of the reported models for simulating the conformality of ALD. The different classes of models are discussed with special attention for the key assumptions typically used in the different modelling approaches. The influence of certain assumptions on simulated deposition thickness profiles is illustrated and discussed with the aim of shedding light on how deposition thickness profiles can provide insights into factors governing the surface chemistry of ALD processes. We hope that this review can serve as a starting point and reference work for new and expert researchers interested in the conformality of ALD and, at the same time, will trigger new research to further improve our understanding of this famous characteristic of ALD processes.

Original languageEnglish
Article number021302
Number of pages44
JournalApplied Physics Reviews
Volume6
Issue number2
DOIs
Publication statusPublished - 1 Jun 2019
MoE publication typeA2 Review article in a scientific journal

Fingerprint

atomic layer epitaxy
aspect ratio
high aspect ratio
energy technology
coatings
gas transport
thermal plasmas
nanotechnology
profiles
microelectronics
solid surfaces
ozone

Cite this

Cremers, Véronique ; Puurunen, Riikka L. ; Dendooven, Jolien. / Conformality in atomic layer deposition : Current status overview of analysis and modelling. In: Applied Physics Reviews. 2019 ; Vol. 6, No. 2.
@article{8fee00599d85400da321a25179ce1ede,
title = "Conformality in atomic layer deposition: Current status overview of analysis and modelling",
abstract = "Atomic layer deposition (ALD) relies on alternated, self-limiting reactions between gaseous reactants and an exposed solid surface to deposit highly conformal coatings with a thickness controlled at the submonolayer level. These advantages have rendered ALD a mainstream technique in microelectronics and have triggered growing interest in ALD for a variety of nanotechnology applications, including energy technologies. Often, the choice for ALD is related to the need for a conformal coating on a 3D nanostructured surface, making the conformality of ALD processes a key factor in actual applications. In this work, we aim to review the current status of knowledge about the conformality of ALD processes. We describe the basic concepts related to the conformality of ALD, including an overview of relevant gas transport regimes, definitions of exposure and sticking probability, and a distinction between different ALD growth types observed in high aspect ratio structures. In addition, aiming for a more standardized and direct comparison of reported results concerning the conformality of ALD processes, we propose a new concept, Equivalent Aspect Ratio (EAR), to describe 3D substrates and introduce standard ways to express thin film conformality. Other than the conventional aspect ratio, the EAR provides a measure for the ease of coatability by referring to a cylindrical hole as the reference structure. The different types of high aspect ratio structures and characterization approaches that have been used for quantifying the conformality of ALD processes are reviewed. The published experimental data on the conformality of thermal, plasma-enhanced, and ozone-based ALD processes are tabulated and discussed. Besides discussing the experimental results of conformality of ALD, we will also give an overview of the reported models for simulating the conformality of ALD. The different classes of models are discussed with special attention for the key assumptions typically used in the different modelling approaches. The influence of certain assumptions on simulated deposition thickness profiles is illustrated and discussed with the aim of shedding light on how deposition thickness profiles can provide insights into factors governing the surface chemistry of ALD processes. We hope that this review can serve as a starting point and reference work for new and expert researchers interested in the conformality of ALD and, at the same time, will trigger new research to further improve our understanding of this famous characteristic of ALD processes.",
author = "V{\'e}ronique Cremers and Puurunen, {Riikka L.} and Jolien Dendooven",
year = "2019",
month = "6",
day = "1",
doi = "10.1063/1.5060967",
language = "English",
volume = "6",
journal = "Applied Physics Reviews",
issn = "1931-9401",
publisher = "American Institute of Physics AIP",
number = "2",

}

Conformality in atomic layer deposition : Current status overview of analysis and modelling. / Cremers, Véronique (Corresponding Author); Puurunen, Riikka L.; Dendooven, Jolien.

In: Applied Physics Reviews, Vol. 6, No. 2, 021302, 01.06.2019.

Research output: Contribution to journalReview ArticleScientificpeer-review

TY - JOUR

T1 - Conformality in atomic layer deposition

T2 - Current status overview of analysis and modelling

AU - Cremers, Véronique

AU - Puurunen, Riikka L.

AU - Dendooven, Jolien

PY - 2019/6/1

Y1 - 2019/6/1

N2 - Atomic layer deposition (ALD) relies on alternated, self-limiting reactions between gaseous reactants and an exposed solid surface to deposit highly conformal coatings with a thickness controlled at the submonolayer level. These advantages have rendered ALD a mainstream technique in microelectronics and have triggered growing interest in ALD for a variety of nanotechnology applications, including energy technologies. Often, the choice for ALD is related to the need for a conformal coating on a 3D nanostructured surface, making the conformality of ALD processes a key factor in actual applications. In this work, we aim to review the current status of knowledge about the conformality of ALD processes. We describe the basic concepts related to the conformality of ALD, including an overview of relevant gas transport regimes, definitions of exposure and sticking probability, and a distinction between different ALD growth types observed in high aspect ratio structures. In addition, aiming for a more standardized and direct comparison of reported results concerning the conformality of ALD processes, we propose a new concept, Equivalent Aspect Ratio (EAR), to describe 3D substrates and introduce standard ways to express thin film conformality. Other than the conventional aspect ratio, the EAR provides a measure for the ease of coatability by referring to a cylindrical hole as the reference structure. The different types of high aspect ratio structures and characterization approaches that have been used for quantifying the conformality of ALD processes are reviewed. The published experimental data on the conformality of thermal, plasma-enhanced, and ozone-based ALD processes are tabulated and discussed. Besides discussing the experimental results of conformality of ALD, we will also give an overview of the reported models for simulating the conformality of ALD. The different classes of models are discussed with special attention for the key assumptions typically used in the different modelling approaches. The influence of certain assumptions on simulated deposition thickness profiles is illustrated and discussed with the aim of shedding light on how deposition thickness profiles can provide insights into factors governing the surface chemistry of ALD processes. We hope that this review can serve as a starting point and reference work for new and expert researchers interested in the conformality of ALD and, at the same time, will trigger new research to further improve our understanding of this famous characteristic of ALD processes.

AB - Atomic layer deposition (ALD) relies on alternated, self-limiting reactions between gaseous reactants and an exposed solid surface to deposit highly conformal coatings with a thickness controlled at the submonolayer level. These advantages have rendered ALD a mainstream technique in microelectronics and have triggered growing interest in ALD for a variety of nanotechnology applications, including energy technologies. Often, the choice for ALD is related to the need for a conformal coating on a 3D nanostructured surface, making the conformality of ALD processes a key factor in actual applications. In this work, we aim to review the current status of knowledge about the conformality of ALD processes. We describe the basic concepts related to the conformality of ALD, including an overview of relevant gas transport regimes, definitions of exposure and sticking probability, and a distinction between different ALD growth types observed in high aspect ratio structures. In addition, aiming for a more standardized and direct comparison of reported results concerning the conformality of ALD processes, we propose a new concept, Equivalent Aspect Ratio (EAR), to describe 3D substrates and introduce standard ways to express thin film conformality. Other than the conventional aspect ratio, the EAR provides a measure for the ease of coatability by referring to a cylindrical hole as the reference structure. The different types of high aspect ratio structures and characterization approaches that have been used for quantifying the conformality of ALD processes are reviewed. The published experimental data on the conformality of thermal, plasma-enhanced, and ozone-based ALD processes are tabulated and discussed. Besides discussing the experimental results of conformality of ALD, we will also give an overview of the reported models for simulating the conformality of ALD. The different classes of models are discussed with special attention for the key assumptions typically used in the different modelling approaches. The influence of certain assumptions on simulated deposition thickness profiles is illustrated and discussed with the aim of shedding light on how deposition thickness profiles can provide insights into factors governing the surface chemistry of ALD processes. We hope that this review can serve as a starting point and reference work for new and expert researchers interested in the conformality of ALD and, at the same time, will trigger new research to further improve our understanding of this famous characteristic of ALD processes.

UR - http://www.scopus.com/inward/record.url?scp=85065212448&partnerID=8YFLogxK

U2 - 10.1063/1.5060967

DO - 10.1063/1.5060967

M3 - Review Article

VL - 6

JO - Applied Physics Reviews

JF - Applied Physics Reviews

SN - 1931-9401

IS - 2

M1 - 021302

ER -