TY - JOUR
T1 - Consumer adoption of future mydata-based preventive ehealth services
T2 - An acceptance model and survey study
AU - Koivumäki, Timo
AU - Pekkarinen, Saara
AU - Lappi, Minna
AU - Vaïsänen, Jere
AU - Juntunen, Jouni
AU - Pikkarainen, Minna
N1 - Funding Information:
The study was carried out as a part of the DHR project, funded by Tekes—the Finnish Funding Agency for Innovation.
Publisher Copyright:
© 2017 Wenjing Pian, Christopher SG Khoo, Jianxing Chi.
Copyright:
Copyright 2020 Elsevier B.V., All rights reserved.
PY - 2017/12/1
Y1 - 2017/12/1
N2 - Background: Constantly increasing health care costs have led countries and health care providers to the point where health care systems must be reinvented. Consequently, electronic health (eHealth) has recently received a great deal of attention in social sciences in the domain of Internet studies. However, only a fraction of these studies focuses on the acceptability of eHealth, making consumers' subjective evaluation an understudied field. This study will address this gap by focusing on the acceptance of MyData-based preventive eHealth services from the consumer point of view. We are adopting the term "MyData", which according to a White Paper of the Finnish Ministry of Transport and Communication refers to "1) a new approach, a paradigm shift in personal data management and processing that seeks to transform the current organization centric system to a human centric system, 2) to personal data as a resource that the individual can access and control."Objective: The aim of this study was to investigate what factors influence consumers' intentions to use a MyData-based preventive eHealth service before use.Methods: We applied a new adoption model combining Venkatesh's unified theory of acceptance and use of technology 2 (UTAUT2) in a consumer context and three constructs from health behavior theories, namely threat appraisals, self-efficacy, and perceived barriers. To test the research model, we applied structural equation modeling (SEM) with Mplus software, version 7.4. A Web-based survey was administered. We collected 855 responses.Results: We first applied traditional SEM for the research model, which was not statistically significant. We then tested for possible heterogeneity in the data by running a mixture analysis. We found that heterogeneity was not the cause for the poor performance of the research model. Thus, we moved on to model-generating SEM and ended up with a statistically significant empirical model (root mean square error of approximation [RMSEA] 0.051, Tucker-Lewis index [TLI] 0.906, comparative fit index [CFI] 0.915, and standardized root mean square residual 0.062). According to our empirical model, the statistically significant drivers for behavioral intention were effort expectancy (beta=.191, P<.001), self-efficacy (beta=.449, P<.001), threat appraisals (beta=.416, P<.001), and perceived barriers (beta=-.212, P=.009).Conclusions: Our research highlighted the importance of health-related factors when it comes to eHealth technology adoption in the consumer context. Emphasis should especially be placed on efforts to increase consumers' self-efficacy in eHealth technology use and in supporting healthy behavior.
AB - Background: Constantly increasing health care costs have led countries and health care providers to the point where health care systems must be reinvented. Consequently, electronic health (eHealth) has recently received a great deal of attention in social sciences in the domain of Internet studies. However, only a fraction of these studies focuses on the acceptability of eHealth, making consumers' subjective evaluation an understudied field. This study will address this gap by focusing on the acceptance of MyData-based preventive eHealth services from the consumer point of view. We are adopting the term "MyData", which according to a White Paper of the Finnish Ministry of Transport and Communication refers to "1) a new approach, a paradigm shift in personal data management and processing that seeks to transform the current organization centric system to a human centric system, 2) to personal data as a resource that the individual can access and control."Objective: The aim of this study was to investigate what factors influence consumers' intentions to use a MyData-based preventive eHealth service before use.Methods: We applied a new adoption model combining Venkatesh's unified theory of acceptance and use of technology 2 (UTAUT2) in a consumer context and three constructs from health behavior theories, namely threat appraisals, self-efficacy, and perceived barriers. To test the research model, we applied structural equation modeling (SEM) with Mplus software, version 7.4. A Web-based survey was administered. We collected 855 responses.Results: We first applied traditional SEM for the research model, which was not statistically significant. We then tested for possible heterogeneity in the data by running a mixture analysis. We found that heterogeneity was not the cause for the poor performance of the research model. Thus, we moved on to model-generating SEM and ended up with a statistically significant empirical model (root mean square error of approximation [RMSEA] 0.051, Tucker-Lewis index [TLI] 0.906, comparative fit index [CFI] 0.915, and standardized root mean square residual 0.062). According to our empirical model, the statistically significant drivers for behavioral intention were effort expectancy (beta=.191, P<.001), self-efficacy (beta=.449, P<.001), threat appraisals (beta=.416, P<.001), and perceived barriers (beta=-.212, P=.009).Conclusions: Our research highlighted the importance of health-related factors when it comes to eHealth technology adoption in the consumer context. Emphasis should especially be placed on efforts to increase consumers' self-efficacy in eHealth technology use and in supporting healthy behavior.
UR - http://www.scopus.com/inward/record.url?scp=85038962621&partnerID=8YFLogxK
U2 - 10.2196/jmir.7821
DO - 10.2196/jmir.7821
M3 - Article
C2 - 29273574
AN - SCOPUS:85038962621
SN - 1439-4456
VL - 19
SP - e429
JO - Journal of Medical Internet Research
JF - Journal of Medical Internet Research
IS - 12
M1 - e429
ER -