Contribution to comparison of methods for determining welding procedures for the avoidance of hydrogen cracking

Risto Karppi, Pekka Nevasmaa

    Research output: Book/ReportReport

    Abstract

    A comparison of methods for determining welding procedures for the avoidance of hydrogen cracking during fabrication was made by Hart et al. for the International Institute of Welding (IIW Doc. IX-1602-90). Five published methods dealing with primary cracking parameters were used to assess safe welding conditions for two C-Mn steels. This paper contributes to the work by adding one more method to this comparison. This method, denoted as the VTT/OU method, was jointly developed and published in 1984 by the Technical Research Centre of Finland (VTT) and Osaka University, Japan (OU). The VTT/OU method described briefly in the paper is based on the comparison of two values of the stress field parameter at the crack initiation area. The required value of field parameter is assessed by the restraint of the structure and the joint geometry. The attainable level of field parameter is determined by the steel composition, weld thermal cycle and diffusible hydrogen level. Safe welding conditions were determined by the VTT/OU method corresponding to that in the paper of Hart et al. in terms of minimum arc energy without preheat, and minimum preheat for three arc energies: 1, 2 and 3 kJ/mm. As parameters, the hydrogen level, joint type (butt and fillet) and plate thickness were varied. The VTT/OU method was shown to take a somewhat different stand from the others on the importance of crack-controlling factors. The joint geometry, especially with butt joints, is regarded as an essential factor affecting the level of precautions necessary. A symmetric double-V groove was chosen for calculations by the VTT/OU method, as the joint geometry was not specified in IIW Doc. IX-1602-90. Examples are, however, given on the other joint geometries. Owing to the sensitivity of necessary precautions to these geometrical factors, the level of requirements set by the VTT/OU method can vary considerably. The range of variation is of the same order of magnitude as those differences Hart et al. showed to exist between the five methods considered in IIW Doc. IX-1602-90. The VTT/OU method considers the use of low hydrogen electrodes and hydrogen removal by preheating above 100 °C more effective, than reducing HAZ hardness by increasing the arc energy in the practical range of welding. Therefore, especially with thicker plates (50 mm) the VTT/OU method is more conservative than others for min. arc energies at room temperature, especially with higher hydrogen levels. For the same reason, however, minimum preheat levels at constant arc energies are not in excess of those of other methods. For the fillet welds, the VTT/OU method is found to agree very well with the CTS test results given in Hart's paper for both steels under consideration. It should, however, be noted that due to the statistical nature of many parameters involved, the VTT/OU method always applies a safety factor. For this reason the VTT/OU method recommends for both steels a 0.5 kJ/mm higher arc energy than does the TWI method for fillets corresponding to the CTS tests. According to the present calculations, the TWI method predicts arc energy values that correspond to a 50 % risk of cracking in CTS tests. Further R & D work in international co-operation is suggested for improving the consistency of the methods for predicting safety against hydrogen cracking. The applicability of these methods for new low-carbon steels, such as TMCP steels with a low impurity content, also deserves increasing attention in future studies.
    Original languageEnglish
    Place of PublicationEspoo
    PublisherVTT Technical Research Centre of Finland
    Number of pages53
    ISBN (Print)951-38-4225-8
    Publication statusPublished - 1992
    MoE publication typeNot Eligible

    Publication series

    SeriesVTT Publications
    Number107
    ISSN1235-0621

    Fingerprint

    Welding
    Hydrogen
    Steel
    Geometry
    Welds
    International cooperation
    Preheating
    Safety factor
    Low carbon steel
    Crack initiation
    Hardness
    Impurities
    Cracks
    Fabrication
    Electrodes
    Chemical analysis
    Temperature

    Keywords

    • arc welding
    • welded joints
    • butt joints
    • fillet welds
    • hydrogen
    • diffusion
    • manganese steels
    • cracking (fracturing)
    • crack initiation
    • stress analysis
    • stress concentration
    • heating
    • energy transfer
    • calculations
    • comparison
    • instructions
    • methods
    • determination
    • safety
    • safety factor

    Cite this

    Karppi, R., & Nevasmaa, P. (1992). Contribution to comparison of methods for determining welding procedures for the avoidance of hydrogen cracking. Espoo: VTT Technical Research Centre of Finland. VTT Publications, No. 107
    Karppi, Risto ; Nevasmaa, Pekka. / Contribution to comparison of methods for determining welding procedures for the avoidance of hydrogen cracking. Espoo : VTT Technical Research Centre of Finland, 1992. 53 p. (VTT Publications; No. 107).
    @book{19edee35a71046bb826d0b1418162430,
    title = "Contribution to comparison of methods for determining welding procedures for the avoidance of hydrogen cracking",
    abstract = "A comparison of methods for determining welding procedures for the avoidance of hydrogen cracking during fabrication was made by Hart et al. for the International Institute of Welding (IIW Doc. IX-1602-90). Five published methods dealing with primary cracking parameters were used to assess safe welding conditions for two C-Mn steels. This paper contributes to the work by adding one more method to this comparison. This method, denoted as the VTT/OU method, was jointly developed and published in 1984 by the Technical Research Centre of Finland (VTT) and Osaka University, Japan (OU). The VTT/OU method described briefly in the paper is based on the comparison of two values of the stress field parameter at the crack initiation area. The required value of field parameter is assessed by the restraint of the structure and the joint geometry. The attainable level of field parameter is determined by the steel composition, weld thermal cycle and diffusible hydrogen level. Safe welding conditions were determined by the VTT/OU method corresponding to that in the paper of Hart et al. in terms of minimum arc energy without preheat, and minimum preheat for three arc energies: 1, 2 and 3 kJ/mm. As parameters, the hydrogen level, joint type (butt and fillet) and plate thickness were varied. The VTT/OU method was shown to take a somewhat different stand from the others on the importance of crack-controlling factors. The joint geometry, especially with butt joints, is regarded as an essential factor affecting the level of precautions necessary. A symmetric double-V groove was chosen for calculations by the VTT/OU method, as the joint geometry was not specified in IIW Doc. IX-1602-90. Examples are, however, given on the other joint geometries. Owing to the sensitivity of necessary precautions to these geometrical factors, the level of requirements set by the VTT/OU method can vary considerably. The range of variation is of the same order of magnitude as those differences Hart et al. showed to exist between the five methods considered in IIW Doc. IX-1602-90. The VTT/OU method considers the use of low hydrogen electrodes and hydrogen removal by preheating above 100 °C more effective, than reducing HAZ hardness by increasing the arc energy in the practical range of welding. Therefore, especially with thicker plates (50 mm) the VTT/OU method is more conservative than others for min. arc energies at room temperature, especially with higher hydrogen levels. For the same reason, however, minimum preheat levels at constant arc energies are not in excess of those of other methods. For the fillet welds, the VTT/OU method is found to agree very well with the CTS test results given in Hart's paper for both steels under consideration. It should, however, be noted that due to the statistical nature of many parameters involved, the VTT/OU method always applies a safety factor. For this reason the VTT/OU method recommends for both steels a 0.5 kJ/mm higher arc energy than does the TWI method for fillets corresponding to the CTS tests. According to the present calculations, the TWI method predicts arc energy values that correspond to a 50 {\%} risk of cracking in CTS tests. Further R & D work in international co-operation is suggested for improving the consistency of the methods for predicting safety against hydrogen cracking. The applicability of these methods for new low-carbon steels, such as TMCP steels with a low impurity content, also deserves increasing attention in future studies.",
    keywords = "arc welding, welded joints, butt joints, fillet welds, hydrogen, diffusion, manganese steels, cracking (fracturing), crack initiation, stress analysis, stress concentration, heating, energy transfer, calculations, comparison, instructions, methods, determination, safety, safety factor",
    author = "Risto Karppi and Pekka Nevasmaa",
    note = "Project code: KOT2002",
    year = "1992",
    language = "English",
    isbn = "951-38-4225-8",
    series = "VTT Publications",
    publisher = "VTT Technical Research Centre of Finland",
    number = "107",
    address = "Finland",

    }

    Karppi, R & Nevasmaa, P 1992, Contribution to comparison of methods for determining welding procedures for the avoidance of hydrogen cracking. VTT Publications, no. 107, VTT Technical Research Centre of Finland, Espoo.

    Contribution to comparison of methods for determining welding procedures for the avoidance of hydrogen cracking. / Karppi, Risto; Nevasmaa, Pekka.

    Espoo : VTT Technical Research Centre of Finland, 1992. 53 p. (VTT Publications; No. 107).

    Research output: Book/ReportReport

    TY - BOOK

    T1 - Contribution to comparison of methods for determining welding procedures for the avoidance of hydrogen cracking

    AU - Karppi, Risto

    AU - Nevasmaa, Pekka

    N1 - Project code: KOT2002

    PY - 1992

    Y1 - 1992

    N2 - A comparison of methods for determining welding procedures for the avoidance of hydrogen cracking during fabrication was made by Hart et al. for the International Institute of Welding (IIW Doc. IX-1602-90). Five published methods dealing with primary cracking parameters were used to assess safe welding conditions for two C-Mn steels. This paper contributes to the work by adding one more method to this comparison. This method, denoted as the VTT/OU method, was jointly developed and published in 1984 by the Technical Research Centre of Finland (VTT) and Osaka University, Japan (OU). The VTT/OU method described briefly in the paper is based on the comparison of two values of the stress field parameter at the crack initiation area. The required value of field parameter is assessed by the restraint of the structure and the joint geometry. The attainable level of field parameter is determined by the steel composition, weld thermal cycle and diffusible hydrogen level. Safe welding conditions were determined by the VTT/OU method corresponding to that in the paper of Hart et al. in terms of minimum arc energy without preheat, and minimum preheat for three arc energies: 1, 2 and 3 kJ/mm. As parameters, the hydrogen level, joint type (butt and fillet) and plate thickness were varied. The VTT/OU method was shown to take a somewhat different stand from the others on the importance of crack-controlling factors. The joint geometry, especially with butt joints, is regarded as an essential factor affecting the level of precautions necessary. A symmetric double-V groove was chosen for calculations by the VTT/OU method, as the joint geometry was not specified in IIW Doc. IX-1602-90. Examples are, however, given on the other joint geometries. Owing to the sensitivity of necessary precautions to these geometrical factors, the level of requirements set by the VTT/OU method can vary considerably. The range of variation is of the same order of magnitude as those differences Hart et al. showed to exist between the five methods considered in IIW Doc. IX-1602-90. The VTT/OU method considers the use of low hydrogen electrodes and hydrogen removal by preheating above 100 °C more effective, than reducing HAZ hardness by increasing the arc energy in the practical range of welding. Therefore, especially with thicker plates (50 mm) the VTT/OU method is more conservative than others for min. arc energies at room temperature, especially with higher hydrogen levels. For the same reason, however, minimum preheat levels at constant arc energies are not in excess of those of other methods. For the fillet welds, the VTT/OU method is found to agree very well with the CTS test results given in Hart's paper for both steels under consideration. It should, however, be noted that due to the statistical nature of many parameters involved, the VTT/OU method always applies a safety factor. For this reason the VTT/OU method recommends for both steels a 0.5 kJ/mm higher arc energy than does the TWI method for fillets corresponding to the CTS tests. According to the present calculations, the TWI method predicts arc energy values that correspond to a 50 % risk of cracking in CTS tests. Further R & D work in international co-operation is suggested for improving the consistency of the methods for predicting safety against hydrogen cracking. The applicability of these methods for new low-carbon steels, such as TMCP steels with a low impurity content, also deserves increasing attention in future studies.

    AB - A comparison of methods for determining welding procedures for the avoidance of hydrogen cracking during fabrication was made by Hart et al. for the International Institute of Welding (IIW Doc. IX-1602-90). Five published methods dealing with primary cracking parameters were used to assess safe welding conditions for two C-Mn steels. This paper contributes to the work by adding one more method to this comparison. This method, denoted as the VTT/OU method, was jointly developed and published in 1984 by the Technical Research Centre of Finland (VTT) and Osaka University, Japan (OU). The VTT/OU method described briefly in the paper is based on the comparison of two values of the stress field parameter at the crack initiation area. The required value of field parameter is assessed by the restraint of the structure and the joint geometry. The attainable level of field parameter is determined by the steel composition, weld thermal cycle and diffusible hydrogen level. Safe welding conditions were determined by the VTT/OU method corresponding to that in the paper of Hart et al. in terms of minimum arc energy without preheat, and minimum preheat for three arc energies: 1, 2 and 3 kJ/mm. As parameters, the hydrogen level, joint type (butt and fillet) and plate thickness were varied. The VTT/OU method was shown to take a somewhat different stand from the others on the importance of crack-controlling factors. The joint geometry, especially with butt joints, is regarded as an essential factor affecting the level of precautions necessary. A symmetric double-V groove was chosen for calculations by the VTT/OU method, as the joint geometry was not specified in IIW Doc. IX-1602-90. Examples are, however, given on the other joint geometries. Owing to the sensitivity of necessary precautions to these geometrical factors, the level of requirements set by the VTT/OU method can vary considerably. The range of variation is of the same order of magnitude as those differences Hart et al. showed to exist between the five methods considered in IIW Doc. IX-1602-90. The VTT/OU method considers the use of low hydrogen electrodes and hydrogen removal by preheating above 100 °C more effective, than reducing HAZ hardness by increasing the arc energy in the practical range of welding. Therefore, especially with thicker plates (50 mm) the VTT/OU method is more conservative than others for min. arc energies at room temperature, especially with higher hydrogen levels. For the same reason, however, minimum preheat levels at constant arc energies are not in excess of those of other methods. For the fillet welds, the VTT/OU method is found to agree very well with the CTS test results given in Hart's paper for both steels under consideration. It should, however, be noted that due to the statistical nature of many parameters involved, the VTT/OU method always applies a safety factor. For this reason the VTT/OU method recommends for both steels a 0.5 kJ/mm higher arc energy than does the TWI method for fillets corresponding to the CTS tests. According to the present calculations, the TWI method predicts arc energy values that correspond to a 50 % risk of cracking in CTS tests. Further R & D work in international co-operation is suggested for improving the consistency of the methods for predicting safety against hydrogen cracking. The applicability of these methods for new low-carbon steels, such as TMCP steels with a low impurity content, also deserves increasing attention in future studies.

    KW - arc welding

    KW - welded joints

    KW - butt joints

    KW - fillet welds

    KW - hydrogen

    KW - diffusion

    KW - manganese steels

    KW - cracking (fracturing)

    KW - crack initiation

    KW - stress analysis

    KW - stress concentration

    KW - heating

    KW - energy transfer

    KW - calculations

    KW - comparison

    KW - instructions

    KW - methods

    KW - determination

    KW - safety

    KW - safety factor

    M3 - Report

    SN - 951-38-4225-8

    T3 - VTT Publications

    BT - Contribution to comparison of methods for determining welding procedures for the avoidance of hydrogen cracking

    PB - VTT Technical Research Centre of Finland

    CY - Espoo

    ER -

    Karppi R, Nevasmaa P. Contribution to comparison of methods for determining welding procedures for the avoidance of hydrogen cracking. Espoo: VTT Technical Research Centre of Finland, 1992. 53 p. (VTT Publications; No. 107).