Abstract
For scalable solid-state quantum technologies, there appears to be no alternative to the temperature operation below 1 K, and it is evident that the required low-temperature infrastructure has been an obstacle for development of quantum devices. Although maintenance-free dry dilution refrigerators are now available, using large refrigerators limits the application only to large facilities such as future quantum data centres. To solve this problem, we have developed a thermionic solid state mK - cooler platform for quantum devices [1]. The platform is a mm-scale silicon sub-chip (Fig. 1) that is suspended by micron scale semiconductor-superconductor (Sm-S) tunnel junctions [2]. The junctions function as both: thermal isolation and electrical coolers. The interfacial thermal boundary resistance, due to the lattice mismatch between the junctions and the sub-chip, provides phonon isolation. The superconducting energy gap enables cooling of the platform by quasi-particle filtering [3] and it provides highly efficient barrier for electron mediated heat transport. So far we have demonstrated refrigeration of the platform by 40 % from bath temperature of 170 mK. We have simulated that the platform can be improved by sophisticated material and phonon engineering and multistage cascade structure to enable cooling even from 1.5 K to about 100 mK. This would be a highly cost effective method, both economically and in energy, to reach low temperatures with potential to bring quantum technologies to tabletop pulse tube refrigerators. Furthermore, the platform is a useful test bench for nanoscale heat transport.
Original language | English |
---|---|
Publication status | Published - 2019 |
MoE publication type | Not Eligible |
Event | Physics Days 2019 : Enjoying physics - Helsinki, Finland Duration: 5 Mar 2019 → 7 Mar 2019 |
Conference
Conference | Physics Days 2019 |
---|---|
Country/Territory | Finland |
City | Helsinki |
Period | 5/03/19 → 7/03/19 |