Cooperative colloidal self-assembly of metal-protein superlattice wires

Ville Liljeström, Ari Ora, Jukka Hassinen, Heikki T. Rekola, N. Nonappa, Maria Heilala, Ville Hynninen, Jussi J. Joensuu, Robin H.A. Ras, Päivi Törmä, Olli Ikkala, Mauri A. Kostiainen

Research output: Contribution to journalArticleScientificpeer-review

23 Citations (Scopus)

Abstract

Material properties depend critically on the packing and order of constituent units throughout length scales. Beyond classically explored molecular self-assembly, structure formation in the nanoparticle and colloidal length scales have recently been actively explored for new functions. Structure of colloidal assemblies depends strongly on the assembly process, and higher structural control can be reliably achieved only if the process is deterministic. Here we show that self-assembly of cationic spherical metal nanoparticles and anionic rod-like viruses yields well-defined binary superlattice wires. The superlattice structures are explained by a cooperative assembly pathway that proceeds in a zipper-like manner after nucleation. Curiously, the formed superstructure shows right-handed helical twisting due to the right-handed structure of the virus. This leads to structure-dependent chiral plasmonic function of the material. The work highlights the importance of well-defined colloidal units when pursuing unforeseen and complex assemblies.
Original languageEnglish
Article number671
JournalNature Communications
Volume8
Issue number1
DOIs
Publication statusPublished - 2017
MoE publication typeA1 Journal article-refereed

Fingerprint

Metal Nanoparticles
Viral Structures
viruses
Nanoparticles
Self assembly
assemblies
self assembly
assembly
Metals
zippers
wire
Wire
Viruses
proteins
nanoparticles
twisting
metals
Proteins
rods
nucleation

Cite this

Liljeström, V., Ora, A., Hassinen, J., Rekola, H. T., Nonappa, N., Heilala, M., ... Kostiainen, M. A. (2017). Cooperative colloidal self-assembly of metal-protein superlattice wires. Nature Communications, 8(1), [671]. https://doi.org/10.1038/s41467-017-00697-z
Liljeström, Ville ; Ora, Ari ; Hassinen, Jukka ; Rekola, Heikki T. ; Nonappa, N. ; Heilala, Maria ; Hynninen, Ville ; Joensuu, Jussi J. ; Ras, Robin H.A. ; Törmä, Päivi ; Ikkala, Olli ; Kostiainen, Mauri A. / Cooperative colloidal self-assembly of metal-protein superlattice wires. In: Nature Communications. 2017 ; Vol. 8, No. 1.
@article{07ae05317b1b4598bf93e0c4b03ecb10,
title = "Cooperative colloidal self-assembly of metal-protein superlattice wires",
abstract = "Material properties depend critically on the packing and order of constituent units throughout length scales. Beyond classically explored molecular self-assembly, structure formation in the nanoparticle and colloidal length scales have recently been actively explored for new functions. Structure of colloidal assemblies depends strongly on the assembly process, and higher structural control can be reliably achieved only if the process is deterministic. Here we show that self-assembly of cationic spherical metal nanoparticles and anionic rod-like viruses yields well-defined binary superlattice wires. The superlattice structures are explained by a cooperative assembly pathway that proceeds in a zipper-like manner after nucleation. Curiously, the formed superstructure shows right-handed helical twisting due to the right-handed structure of the virus. This leads to structure-dependent chiral plasmonic function of the material. The work highlights the importance of well-defined colloidal units when pursuing unforeseen and complex assemblies.",
author = "Ville Liljestr{\"o}m and Ari Ora and Jukka Hassinen and Rekola, {Heikki T.} and N. Nonappa and Maria Heilala and Ville Hynninen and Joensuu, {Jussi J.} and Ras, {Robin H.A.} and P{\"a}ivi T{\"o}rm{\"a} and Olli Ikkala and Kostiainen, {Mauri A.}",
year = "2017",
doi = "10.1038/s41467-017-00697-z",
language = "English",
volume = "8",
journal = "Nature Communications",
issn = "2041-1723",
publisher = "Nature Publishing Group",
number = "1",

}

Liljeström, V, Ora, A, Hassinen, J, Rekola, HT, Nonappa, N, Heilala, M, Hynninen, V, Joensuu, JJ, Ras, RHA, Törmä, P, Ikkala, O & Kostiainen, MA 2017, 'Cooperative colloidal self-assembly of metal-protein superlattice wires', Nature Communications, vol. 8, no. 1, 671. https://doi.org/10.1038/s41467-017-00697-z

Cooperative colloidal self-assembly of metal-protein superlattice wires. / Liljeström, Ville; Ora, Ari; Hassinen, Jukka; Rekola, Heikki T.; Nonappa, N.; Heilala, Maria; Hynninen, Ville; Joensuu, Jussi J.; Ras, Robin H.A.; Törmä, Päivi; Ikkala, Olli; Kostiainen, Mauri A.

In: Nature Communications, Vol. 8, No. 1, 671, 2017.

Research output: Contribution to journalArticleScientificpeer-review

TY - JOUR

T1 - Cooperative colloidal self-assembly of metal-protein superlattice wires

AU - Liljeström, Ville

AU - Ora, Ari

AU - Hassinen, Jukka

AU - Rekola, Heikki T.

AU - Nonappa, N.

AU - Heilala, Maria

AU - Hynninen, Ville

AU - Joensuu, Jussi J.

AU - Ras, Robin H.A.

AU - Törmä, Päivi

AU - Ikkala, Olli

AU - Kostiainen, Mauri A.

PY - 2017

Y1 - 2017

N2 - Material properties depend critically on the packing and order of constituent units throughout length scales. Beyond classically explored molecular self-assembly, structure formation in the nanoparticle and colloidal length scales have recently been actively explored for new functions. Structure of colloidal assemblies depends strongly on the assembly process, and higher structural control can be reliably achieved only if the process is deterministic. Here we show that self-assembly of cationic spherical metal nanoparticles and anionic rod-like viruses yields well-defined binary superlattice wires. The superlattice structures are explained by a cooperative assembly pathway that proceeds in a zipper-like manner after nucleation. Curiously, the formed superstructure shows right-handed helical twisting due to the right-handed structure of the virus. This leads to structure-dependent chiral plasmonic function of the material. The work highlights the importance of well-defined colloidal units when pursuing unforeseen and complex assemblies.

AB - Material properties depend critically on the packing and order of constituent units throughout length scales. Beyond classically explored molecular self-assembly, structure formation in the nanoparticle and colloidal length scales have recently been actively explored for new functions. Structure of colloidal assemblies depends strongly on the assembly process, and higher structural control can be reliably achieved only if the process is deterministic. Here we show that self-assembly of cationic spherical metal nanoparticles and anionic rod-like viruses yields well-defined binary superlattice wires. The superlattice structures are explained by a cooperative assembly pathway that proceeds in a zipper-like manner after nucleation. Curiously, the formed superstructure shows right-handed helical twisting due to the right-handed structure of the virus. This leads to structure-dependent chiral plasmonic function of the material. The work highlights the importance of well-defined colloidal units when pursuing unforeseen and complex assemblies.

UR - http://www.scopus.com/inward/record.url?scp=85029750426&partnerID=8YFLogxK

U2 - 10.1038/s41467-017-00697-z

DO - 10.1038/s41467-017-00697-z

M3 - Article

VL - 8

JO - Nature Communications

JF - Nature Communications

SN - 2041-1723

IS - 1

M1 - 671

ER -

Liljeström V, Ora A, Hassinen J, Rekola HT, Nonappa N, Heilala M et al. Cooperative colloidal self-assembly of metal-protein superlattice wires. Nature Communications. 2017;8(1). 671. https://doi.org/10.1038/s41467-017-00697-z