Copper and copper oxide nanoparticle formation by chemical vapor nucleation from copper (II) acetylacetonate

Albert Nasibulin, Petri Ahonen, Olivier Richard, Esko I. Kauppinen (Corresponding Author), Igor S. Altman

Research output: Contribution to journalArticleScientificpeer-review

55 Citations (Scopus)

Abstract

Crystalline nanometer-size copper and copper (I) oxide particle formation was studied by thermal decomposition of copper acetylacetonate Cu(acac)2 vapor using a vertical flow reactor at ambient nitrogen pressure. The experiments were performed in the precursor vapor pressure range of Pprec = 0.06 to 44 Pa at furnace temperatures of 431.5°C, 596.0°C, and 705.0°C. Agglomerates of primary particles were formed at Pprec0.1 Pa at all temperatures. At 431.5°C the number mean size of the primary particles increased from Dp = 3.7 nm (with geometric standard deviation σg = 1.42) to Dp = 7.2 nm (σg = 1.33) with the increasing precursor vapor particle pressure from 1.8 to 16 Pa. At 705.0°C the primary particle size decreased from Dp = 24.0 nm (σg=1.57) to Dp = 7.6 nm (σg = 1.54), respectively.

At furnace temperatures of 431.5°C and 596.0°C only crystalline copper particles were produced. At 705.0°C the crystalline product of the decomposition depended on the precursor vapor pressure: copper particles were formed at Pprec>10 Pa, copper (I) oxide at Pprecleq 1 Pa, and a mixture of the metal and its oxide at intermediate vapor pressures. A kinetic restriction on copper particle growth was shown, which leads to the main role of Cu2 molecule participation in the particle formation. The formation of copper (I) oxide particles occurs due to the surface reaction of the decomposition products (mainly carbon dioxide). For the explanation of the experimental results, a model is proposed to build a semiempirical phase diagram of the precursor decomposition products.
Original languageEnglish
Pages (from-to)385-400
JournalJournal of Nanoparticle Research
Volume3
Issue number5-6
DOIs
Publication statusPublished - 2001
MoE publication typeA1 Journal article-refereed

Fingerprint Dive into the research topics of 'Copper and copper oxide nanoparticle formation by chemical vapor nucleation from copper (II) acetylacetonate'. Together they form a unique fingerprint.

Cite this