Correlation between cellulose thin film supramolecular structures and interactions with water

Tekla Tammelin*, Ramarao Abburi, Marie Gestranius, Christiane Laine, Harri Setälä, Monika Österberg*

*Corresponding author for this work

    Research output: Contribution to journalArticleScientificpeer-review

    43 Citations (Scopus)

    Abstract

    Water interactions of ultra-thin films of wood-derived polysaccharides were investigated by using surface sensitive methods, Quartz Crystal Microbalance with Dissipation (QCM-D) and Atomic Force Microscopy (AFM). These approaches allow systematic molecular level detection and reveal information on the inherent behaviour of biobased materials with nanosensitivity. The influence of structural features of cellulose films i.e. crystallinity, surface roughness and porosity on water interactions was clarified. Cellulose films were prepared using spin-coating and Langmuir-Schaefer deposition to obtain thin films of equal thickness, identical cellulose origin, simultaneously with different supramolecular structures. The uptake/release of water molecules and swelling were characterized using QCM-D, and the structural features of the films were evaluated by AFM. More crystalline cellulose film possessed nanoporosity and as a consequence higher accessible surface area (more binding sites for water) and thus, it was capable of binding more water molecules in humid air and when immersed in water when compared to amorphous cellulose film. Due to the ordered structure, more crystalline cellulose film remained rigid and elastic although the water binding ability was more pronounced compared to amorphous film. The lower amount of bound water induced softening of the amorphous cellulose film and the elastic layer became viscoelastic at high humidity. Finally, cellulose thin films were modified by adsorbing a layer of 1-butyloxy-2-hydroxypropyl xylan, and the effect on moisture uptake was investigated. It was found that the supramolecular structure of the cellulose substrate has an effect not only on the adsorbed amount of xylan derivative but also on the water interactions of the material.
    Original languageEnglish
    Pages (from-to)4273-4282
    JournalSoft Matter
    Volume11
    Issue number21
    DOIs
    Publication statusPublished - 2015
    MoE publication typeA1 Journal article-refereed

    Fingerprint

    Dive into the research topics of 'Correlation between cellulose thin film supramolecular structures and interactions with water'. Together they form a unique fingerprint.

    Cite this