TY - JOUR
T1 - Crystal structure of an ascomycete fungal laccase from Thielavia arenaria
T2 - Common structural features of asco-laccases
AU - Kallio, Juha P.
AU - Gasparetti, Chiara
AU - Andberg, Martina
AU - Boer, Harry
AU - Koivula, Anu
AU - Kruus, Kristiina
AU - Rouvinen, Juha
AU - Hakulinen, Nina
PY - 2011
Y1 - 2011
N2 - Laccases are copper‐containing enzymes used in various applications, such as textile bleaching. Several crystal structures of laccases from fungi and bacteria are available, but ascomycete types of fungal laccases (asco‐laccases) have been rather unexplored, and to date only the crystal structure of Melanocarpus albomyces laccase (MaL) has been published. We have now solved the crystal structure of another asco‐laccase, from Thielavia arenaria (TaLcc1), at 2.5 Å resolution. The loops near the T1 copper, forming the substrate‐binding pockets of the two asco‐laccases, differ to some extent, and include the amino acid thought to be responsible for catalytic proton transfer, which is Asp in TaLcc1, and Glu in MaL. In addition, the crystal structure of TaLcc1 does not have a chloride attached to the T2 copper, as observed in the crystal structure of MaL. The unique feature of TaLcc1 and MaL as compared with other laccases structures is that, in both structures, the processed C‐terminus blocks the T3 solvent channel leading towards the trinuclear centre, suggesting a common functional role for this conserved ‘C‐terminal plug’. We propose that the asco‐laccases utilize the C‐terminal carboxylic group in proton transfer processes, as has been suggested for Glu498 in the CotA laccase from Bacillus subtilis. The crystal structure of TaLcc1 also shows the formation of a similar weak homodimer, as observed for MaL, that may determine the properties of these asco‐laccases at high protein concentrations.
AB - Laccases are copper‐containing enzymes used in various applications, such as textile bleaching. Several crystal structures of laccases from fungi and bacteria are available, but ascomycete types of fungal laccases (asco‐laccases) have been rather unexplored, and to date only the crystal structure of Melanocarpus albomyces laccase (MaL) has been published. We have now solved the crystal structure of another asco‐laccase, from Thielavia arenaria (TaLcc1), at 2.5 Å resolution. The loops near the T1 copper, forming the substrate‐binding pockets of the two asco‐laccases, differ to some extent, and include the amino acid thought to be responsible for catalytic proton transfer, which is Asp in TaLcc1, and Glu in MaL. In addition, the crystal structure of TaLcc1 does not have a chloride attached to the T2 copper, as observed in the crystal structure of MaL. The unique feature of TaLcc1 and MaL as compared with other laccases structures is that, in both structures, the processed C‐terminus blocks the T3 solvent channel leading towards the trinuclear centre, suggesting a common functional role for this conserved ‘C‐terminal plug’. We propose that the asco‐laccases utilize the C‐terminal carboxylic group in proton transfer processes, as has been suggested for Glu498 in the CotA laccase from Bacillus subtilis. The crystal structure of TaLcc1 also shows the formation of a similar weak homodimer, as observed for MaL, that may determine the properties of these asco‐laccases at high protein concentrations.
KW - ascomycete
KW - C-terminal plug
KW - laccase
KW - proton transfer
KW - redox potential
UR - http://www.scopus.com/inward/record.url?eid=2-s2.0-80051483501&partnerID=MN8TOARS
U2 - 10.1111/j.1742-4658.2011.08146.x
DO - 10.1111/j.1742-4658.2011.08146.x
M3 - Article
SN - 1742-464X
VL - 278
SP - 2283
EP - 2295
JO - FEBS Journal
JF - FEBS Journal
IS - 13
ER -