Cyclic softening of tempered ferritic-martensitic steel P91

Jaromir Janousek, Stefan Holmström, Rami Pohja

    Research output: Contribution to conferenceConference articleScientific

    Abstract

    For the ferritic-martensitic steel P91 cyclic softening has been identified as important factor in the assessments of creep-fatigue in nuclear components. Better understanding of the cyclic softening is needed as it is believed to be the main contributor for the complex material behavior encountered in creep-fatigue testing. In fast reactor components the main life shortening load cycles are from thermal fluctuations causing through-wall stress gradients. The main objective of this work (as a Task in the European project MATISSE) is to perform tailored experiments and to develop models for understanding and predicting the cyclic-softening of P91. The supporting experimental program produces data for calibration and validations of the developed models. An existing elasto-viscoplasticity model simulates the key mechanisms such as decrease in dislocation density, increase in sub-grain size and recovering phenomena. The model will be modified to also incorporate the effect of hold time on the cyclic softening.
    Original languageEnglish
    Publication statusPublished - 2015
    Event31th Conference with International Participation on Computational Mechanics - Spicák, Czech Republic
    Duration: 9 Nov 201511 Nov 2015

    Conference

    Conference31th Conference with International Participation on Computational Mechanics
    CountryCzech Republic
    CitySpicák
    Period9/11/1511/11/15

      Fingerprint

    Keywords

    • cyclic softening
    • creep-fatigue
    • P91 steel

    Cite this

    Janousek, J., Holmström, S., & Pohja, R. (2015). Cyclic softening of tempered ferritic-martensitic steel P91. Paper presented at 31th Conference with International Participation on Computational Mechanics, Spicák, Czech Republic.