Dependence of the high-frequency components of the magnetoelastic voltage on plastic deformation and stress amplitude during stepwise cyclic stressing of ferromagnetic material

Pekka Ruuskanen, Pentti Kettunen

Research output: Contribution to journalArticleScientificpeer-review

2 Citations (Scopus)

Abstract

The high-frequency components F H of the magnetoelastic voltage u B induced during cyclic stressing of ferromagnetic material has been investigated. The true root mean square value B M of the high-frequency components was measured as a function of stress amplitude σ. The effect of strain ageing on the behaviour of B M was also studied. It was found that B M depends on the stress amplitude, plastic deformation, the dislocation arrangements and the mobility of individual dislocations. During successive stepwise increases in the stress amplitude it was found that the B M value of F H increases in the elastic and microplastic deformation range. B M reaches a maximum at a stress amplitude corresponding to the onset of the macroscopic plastic deformation Δεpl. In technically pure iron the onset of the macroscopic deformation range Δεpl was measured to be 0.5 × 10−4. The B M value of the high-frequency components F H decreases when the stress amplitude exceeds the value σB corresponding to the onset of the macroscopic plastic deformation range. The decrease in the high-frequency components F H was found to depend on the macroscopic plastic deformation range Δεpl. The reason for the decrease in B M is both reversible and irreversible plastic deformation. The stress amplitude σB corresponding to the onset of macroscopic plastic deformation was found to be close to the fatigue limit of the test material. Thus this relationship between the magnetic changes and plastic deformation can be used as a non-destructive method to measure the fatigue limit of ferromagnetic material. This was confirmed with several different kinds of structural steel.

Original languageEnglish
Pages (from-to)1233 - 1249
Number of pages17
JournalPhilosophical Magazine A: Physics of Condensed Matter, Structure, Defects and Mechanical Properties
Volume68
Issue number6
DOIs
Publication statusPublished - 1993
MoE publication typeA1 Journal article-refereed

Fingerprint

Ferromagnetic materials
ferromagnetic materials
plastic deformation
Plastic deformation
Electric potential
electric potential
Fatigue of materials
mean square values
materials tests
precipitation hardening
Steel
elastic deformation
Iron
Aging of materials
steels
iron

Cite this

@article{e31d0379623e4871a87fd47c2c277312,
title = "Dependence of the high-frequency components of the magnetoelastic voltage on plastic deformation and stress amplitude during stepwise cyclic stressing of ferromagnetic material",
abstract = "The high-frequency components F H of the magnetoelastic voltage u B induced during cyclic stressing of ferromagnetic material has been investigated. The true root mean square value B M of the high-frequency components was measured as a function of stress amplitude σ. The effect of strain ageing on the behaviour of B M was also studied. It was found that B M depends on the stress amplitude, plastic deformation, the dislocation arrangements and the mobility of individual dislocations. During successive stepwise increases in the stress amplitude it was found that the B M value of F H increases in the elastic and microplastic deformation range. B M reaches a maximum at a stress amplitude corresponding to the onset of the macroscopic plastic deformation Δεpl. In technically pure iron the onset of the macroscopic deformation range Δεpl was measured to be 0.5 × 10−4. The B M value of the high-frequency components F H decreases when the stress amplitude exceeds the value σB corresponding to the onset of the macroscopic plastic deformation range. The decrease in the high-frequency components F H was found to depend on the macroscopic plastic deformation range Δεpl. The reason for the decrease in B M is both reversible and irreversible plastic deformation. The stress amplitude σB corresponding to the onset of macroscopic plastic deformation was found to be close to the fatigue limit of the test material. Thus this relationship between the magnetic changes and plastic deformation can be used as a non-destructive method to measure the fatigue limit of ferromagnetic material. This was confirmed with several different kinds of structural steel.",
author = "Pekka Ruuskanen and Pentti Kettunen",
note = "Project code: MET302013",
year = "1993",
doi = "10.1080/01418619308222929",
language = "English",
volume = "68",
pages = "1233 -- 1249",
journal = "Philosophical Magazine A: Physics of Condensed Matter, Structure, Defects and Mechanical Properties",
issn = "0141-8610",
publisher = "Taylor & Francis",
number = "6",

}

TY - JOUR

T1 - Dependence of the high-frequency components of the magnetoelastic voltage on plastic deformation and stress amplitude during stepwise cyclic stressing of ferromagnetic material

AU - Ruuskanen, Pekka

AU - Kettunen, Pentti

N1 - Project code: MET302013

PY - 1993

Y1 - 1993

N2 - The high-frequency components F H of the magnetoelastic voltage u B induced during cyclic stressing of ferromagnetic material has been investigated. The true root mean square value B M of the high-frequency components was measured as a function of stress amplitude σ. The effect of strain ageing on the behaviour of B M was also studied. It was found that B M depends on the stress amplitude, plastic deformation, the dislocation arrangements and the mobility of individual dislocations. During successive stepwise increases in the stress amplitude it was found that the B M value of F H increases in the elastic and microplastic deformation range. B M reaches a maximum at a stress amplitude corresponding to the onset of the macroscopic plastic deformation Δεpl. In technically pure iron the onset of the macroscopic deformation range Δεpl was measured to be 0.5 × 10−4. The B M value of the high-frequency components F H decreases when the stress amplitude exceeds the value σB corresponding to the onset of the macroscopic plastic deformation range. The decrease in the high-frequency components F H was found to depend on the macroscopic plastic deformation range Δεpl. The reason for the decrease in B M is both reversible and irreversible plastic deformation. The stress amplitude σB corresponding to the onset of macroscopic plastic deformation was found to be close to the fatigue limit of the test material. Thus this relationship between the magnetic changes and plastic deformation can be used as a non-destructive method to measure the fatigue limit of ferromagnetic material. This was confirmed with several different kinds of structural steel.

AB - The high-frequency components F H of the magnetoelastic voltage u B induced during cyclic stressing of ferromagnetic material has been investigated. The true root mean square value B M of the high-frequency components was measured as a function of stress amplitude σ. The effect of strain ageing on the behaviour of B M was also studied. It was found that B M depends on the stress amplitude, plastic deformation, the dislocation arrangements and the mobility of individual dislocations. During successive stepwise increases in the stress amplitude it was found that the B M value of F H increases in the elastic and microplastic deformation range. B M reaches a maximum at a stress amplitude corresponding to the onset of the macroscopic plastic deformation Δεpl. In technically pure iron the onset of the macroscopic deformation range Δεpl was measured to be 0.5 × 10−4. The B M value of the high-frequency components F H decreases when the stress amplitude exceeds the value σB corresponding to the onset of the macroscopic plastic deformation range. The decrease in the high-frequency components F H was found to depend on the macroscopic plastic deformation range Δεpl. The reason for the decrease in B M is both reversible and irreversible plastic deformation. The stress amplitude σB corresponding to the onset of macroscopic plastic deformation was found to be close to the fatigue limit of the test material. Thus this relationship between the magnetic changes and plastic deformation can be used as a non-destructive method to measure the fatigue limit of ferromagnetic material. This was confirmed with several different kinds of structural steel.

U2 - 10.1080/01418619308222929

DO - 10.1080/01418619308222929

M3 - Article

VL - 68

SP - 1233

EP - 1249

JO - Philosophical Magazine A: Physics of Condensed Matter, Structure, Defects and Mechanical Properties

JF - Philosophical Magazine A: Physics of Condensed Matter, Structure, Defects and Mechanical Properties

SN - 0141-8610

IS - 6

ER -