Deposition of Ureido and Methacrylate Functionalities onto Silica Nanoparticles and Its Effect on the Properties of Polypropylene-Based Nanodielectrics

Amirhossein Mahtabani (Corresponding Author), Ilkka Rytöluoto, Minna Niittymaki, Rafał Anyszka, Xiaozhen He, Eetta Saarimäki, Kari Lahti, Mika Paajanen, Wilma Dierkes (Corresponding Author), Anke Blume

Research output: Contribution to journalArticleScientificpeer-review

2 Citations (Scopus)


Surface modification of nanoparticles is often utilized to tailor the interfacial properties in dielectric nanocomposites. Introducing different functional groups to the nanoparticles' surface may induce localized states (traps) that can enhance the dielectric performance of the material depending on their density and energy levels. Furthermore, surface modification of the filler can affect the dispersion quality and crystallization of the nanocomposites which can ultimately alter the dielectric response of the material. In this study, functionalization of silica nanoparticles is demonstrated using 3-(trimethoxysilyl)propyl methacrylate (TMPM) and 1-[3-(trimethoxysilyl)propyl]urea (TMPU) as modifying agents. The effect of such modifications on the crystallization behavior, dispersion quality of the nanoparticles, as well as charge trapping and transport under a medium DC field is studied in nanocomposites based on polypropylene (PP)/ethylene-octene-copolymer (EOC) blends at 1% and 5% of filler concentrations. The results show that both ureido and methacrylate functional groups introduce localized states, but with different energy levels. Nitrogen containing ureido groups in TMPU tend to introduce deeper traps to the filler-polymer interfaces, compared to the methacrylate silane modification. Comparing the two types of surface functionalization, the ureido-functionalized silica resulted in a suppression of space charge formation at the interfaces under a medium DC electric field, despite the relatively larger mean cluster size of nanoparticles.

Original languageEnglish
Pages (from-to)130340-130352
JournalIEEE Access
Publication statusPublished - 14 Sept 2021
MoE publication typeA1 Journal article-refereed


This work was supported by European Union’s Horizon 2020 Research and Innovation Program under Grant 720858.


  • HVDC
  • Surface functionalization
  • dielectrics
  • electrical properties
  • insulation materials
  • nanocomposites
  • silica nanoparticles


Dive into the research topics of 'Deposition of Ureido and Methacrylate Functionalities onto Silica Nanoparticles and Its Effect on the Properties of Polypropylene-Based Nanodielectrics'. Together they form a unique fingerprint.

Cite this