Abstract
Dynamic physics-based models of industrial processes can be computationally heavy which prevents using them in some applications, e.g. in process operator training. Suitability of machine learning in creating surrogate models of a physics-based unit operation models was studied in this research. The main motivation for this was to find out if machine learning model can be accurate enough to replace the corresponding physics-based components in dynamic modelling and simulation software Apros® which is developed by VTT Technical Research Centre of Finland Ltd and Fortum. This study is part of COCOP project, which receive funding from EU, and INTENS project that is Business Finland funded.
The research workwas divided into a literature study and an experimental part. In the literature study, the steps of modelling with data-driven methods were studied and artificial neural network architectures suitable for dynamic modelling were investigated. Based on that, four neural network architectures were chosen for the case studies. In the first case study, linear and nonlinear autoregressive models with exogenous inputs (ARX and NARX respectively) were used in modelling dynamic behaviour of a water tank process build in Apros®. In the second case study, also Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU )were considered and compared with the previously mentioned ARX and NARX models. The workflow from selecting the input and output variables for the machine learning model and generating the datasets in Apros® to implement the machine learning models back to Apros®was defined. Keras is an open source neural network library running on Python that was utilised in the model generation framework which was developed as a part of this study. Keras library is a very popular library that allow fast experimenting. The framework make use of random hyperparameter search and each model is tested on a validation dataset in dynamic manner, i.e. in multi-step-ahead configuration, during the optimisation. The best models based in terms of average normalised root mean squared error (NRMSE) is selected for further testing.
The results of the case studies show that accurate multi-step-ahead models can be built using recurrent artificial neural networks. In the first case study, the linear ARX model achieved slightly better NRMSE value than the nonlinear one, but the accuracy of both models was on a very good level with the average NRMSE being lower than 0.1%. The generalisation ability of the models was tested using multiple datasets and the models proved to generalise well. In the second case study, there were more difference between the models’accuracies. This was an expected result as the studied process contains nonlinearities and thus the linear ARX model performed worse in predicting some output variables than the nonlinear ones. On the other hand, ARX model performed better with some other output variables. However, also in the second case study the model NRMSE values were on good level, being 1.94–3.60 % on testing dataset. Although the workflow to implement machine learning models in Apros® using its Python binding was defined, the actual implementation need more work. Experimenting with Keras neural network models in Apros® was noticed to slow down the simulation even though the model was fast when testing it outside of Apros®. The Python binding in Apros® do not seem to cause overhead to the calculation process which is why further investigating is needed. It is obvious that the machine learning model must be very accurate if it is to be implemented in Apros® because it needs to be able interact with the physics-based model. The actual accuracy requirement that Apros® sets should be also studied to know if and in which direction the framework made for this study needsto be developed.
The research workwas divided into a literature study and an experimental part. In the literature study, the steps of modelling with data-driven methods were studied and artificial neural network architectures suitable for dynamic modelling were investigated. Based on that, four neural network architectures were chosen for the case studies. In the first case study, linear and nonlinear autoregressive models with exogenous inputs (ARX and NARX respectively) were used in modelling dynamic behaviour of a water tank process build in Apros®. In the second case study, also Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU )were considered and compared with the previously mentioned ARX and NARX models. The workflow from selecting the input and output variables for the machine learning model and generating the datasets in Apros® to implement the machine learning models back to Apros®was defined. Keras is an open source neural network library running on Python that was utilised in the model generation framework which was developed as a part of this study. Keras library is a very popular library that allow fast experimenting. The framework make use of random hyperparameter search and each model is tested on a validation dataset in dynamic manner, i.e. in multi-step-ahead configuration, during the optimisation. The best models based in terms of average normalised root mean squared error (NRMSE) is selected for further testing.
The results of the case studies show that accurate multi-step-ahead models can be built using recurrent artificial neural networks. In the first case study, the linear ARX model achieved slightly better NRMSE value than the nonlinear one, but the accuracy of both models was on a very good level with the average NRMSE being lower than 0.1%. The generalisation ability of the models was tested using multiple datasets and the models proved to generalise well. In the second case study, there were more difference between the models’accuracies. This was an expected result as the studied process contains nonlinearities and thus the linear ARX model performed worse in predicting some output variables than the nonlinear ones. On the other hand, ARX model performed better with some other output variables. However, also in the second case study the model NRMSE values were on good level, being 1.94–3.60 % on testing dataset. Although the workflow to implement machine learning models in Apros® using its Python binding was defined, the actual implementation need more work. Experimenting with Keras neural network models in Apros® was noticed to slow down the simulation even though the model was fast when testing it outside of Apros®. The Python binding in Apros® do not seem to cause overhead to the calculation process which is why further investigating is needed. It is obvious that the machine learning model must be very accurate if it is to be implemented in Apros® because it needs to be able interact with the physics-based model. The actual accuracy requirement that Apros® sets should be also studied to know if and in which direction the framework made for this study needsto be developed.
Original language | English |
---|---|
Qualification | Master Degree |
Awarding Institution |
|
Supervisors/Advisors |
|
Award date | 5 Jun 2018 |
Publisher | |
Publication status | Published - 6 Jun 2019 |
MoE publication type | G2 Master's thesis, polytechnic Master's thesis |
Keywords
- dynamic modelling and simulation (DMS)
- data-driven approach
- Artificial neural networks (ANN)
- Power-to-Gas
- surrogate modelling
- machine learning