Direct photolithographic deforming of organomodified siloxane films for micro-optics fabrication

Ari Kärkkäinen, John M. Tamkin, Jeremy D. Rogers, Daniel R. Neal, Osmo Hormi, Ghassan E. Jabbour, Juha Rantala, Michael R. Descour

Research output: Contribution to journalArticleScientificpeer-review

30 Citations (Scopus)

Abstract

Direct photolithographic deforming of hybrid glass films is used to fabricate optical structures. The structure is fabricated in polyethylene-oxide-acrylate modified hybrid glass films with (1) binary and gray-scale photomasks using a mercury UV-lamp exposure and (2) maskless UV-laser patterning. Fabrication of isolated lenslets, lens arrays, and gratings is presented, including the associated exposure patterns. The hybrid glass material yields light-induced deformation peak-to-valley (p.v.) heights up to 12.8 µm with mercury UV-lamp exposure and p.v. deformation heights up to 6.8 µm with 365-nm UV-laser exposure. The fabricated lenslets’ surface data are presented as Zernike-polynomial fit coefficients. Material synthesis and processing-related aspects are examined to understand and control the material’s deformation under exposure. The hybrid glass material exhibits a maximum spectral extinction coefficient of 1.6 × 10-3 µm-1 at wavelengths ranging from 450 to 2200 nm and has a refractive index of 1.52 at 632.8 nm. The fabricated structures exhibit rms surface roughness between 1 and 5 nm.
Original languageEnglish
Pages (from-to)3988-3998
JournalApplied Optics
Volume41
Issue number19
DOIs
Publication statusPublished - 2002
MoE publication typeA1 Journal article-refereed

Fingerprint Dive into the research topics of 'Direct photolithographic deforming of organomodified siloxane films for micro-optics fabrication'. Together they form a unique fingerprint.

  • Cite this

    Kärkkäinen, A., Tamkin, J. M., Rogers, J. D., Neal, D. R., Hormi, O., Jabbour, G. E., Rantala, J., & Descour, M. R. (2002). Direct photolithographic deforming of organomodified siloxane films for micro-optics fabrication. Applied Optics, 41(19), 3988-3998. https://doi.org/10.1364/AO.41.003988