Drug release from starch-acetate films

Laura Tuovinen (Corresponding Author), Soili Peltonen, Kristiina Järvinen

Research output: Contribution to journalArticleScientificpeer-review

59 Citations (Scopus)

Abstract

The aim of the present work was to compare the drug release rates from the native and acetylated starches. The average degree of acetyl substitution per glucose residue of potato starch was either 1.9 (SA DS 1.9) or 2.6 (SA DS 2.6). Bovine serum albumin (BSA) (mol. wt. 68,000), FITC-dextran (mol. wt. 4400), timolol (mol. wt. 332, log P=1.91) and sotalol–HCl (mol. wt. 308, log P=−0.62) were used as model drugs. All of the model drugs were released rapidly from the potato starch film in PBS pH 7.4 with and without α-amylase in the dissolution medium (t50% varied from 0.17 to 3.37 h). When compared to the potato starch film, all of the studied drugs were released at a substantially slower rate from the SA films in the corresponding mediums. The release of the smaller drugs (sotalol, timolol) from the SA films was faster than that of the macromolecules (FITC-dextran, BSA). Furthermore, sotalol was released faster than the more lipohilic timolol from the SA films. Release of macromolecules from the SA films was biphasic with and without α-amylase in the dissolution medium: an initial fast release phase was followed by a slower release phase (SA DS 1.9) or no release occurred after the initial phase (SA DS 2.6). All of the drugs were released faster from the SA DS 1.9 film than the weight loss of the film itself. When compared to the SA DS 1.9 film, the model drugs (except sotalol) were released slower from the SA DS 2.6 film. The macromolecule release from the SA DS 2.6 film was erosion-controlled. The weight loss of the SA DS 2.6 film was slow with and without α-amylase in the incubation medium. The present results show that acetylation of potato starch can substantially retard drug release. The drug release profiles may be controlled by the degree of substitution, since drug release from the SA DS 1.9 film was faster than the corresponding release from the SA DS 2.6 film.
Original languageEnglish
Pages (from-to)345-354
JournalJournal of Controlled Release
Volume91
Issue number3
DOIs
Publication statusPublished - 2003
MoE publication typeA1 Journal article-refereed

Fingerprint

Starch
Solanum tuberosum
Sotalol
Timolol
Amylases
Pharmaceutical Preparations
Bovine Serum Albumin
Weight Loss
Acetylation
Drug Liberation
starch acetate
Glucose
fluorescein isothiocyanate dextran

Keywords

  • starch-acetate
  • controlled drug release
  • alpha-amylase
  • molecular weight
  • lipophilicity
  • biopolymers

Cite this

Tuovinen, Laura ; Peltonen, Soili ; Järvinen, Kristiina. / Drug release from starch-acetate films. In: Journal of Controlled Release. 2003 ; Vol. 91, No. 3. pp. 345-354.
@article{d3127510d13d4f42baa16bcc7d68317f,
title = "Drug release from starch-acetate films",
abstract = "The aim of the present work was to compare the drug release rates from the native and acetylated starches. The average degree of acetyl substitution per glucose residue of potato starch was either 1.9 (SA DS 1.9) or 2.6 (SA DS 2.6). Bovine serum albumin (BSA) (mol. wt. 68,000), FITC-dextran (mol. wt. 4400), timolol (mol. wt. 332, log P=1.91) and sotalol–HCl (mol. wt. 308, log P=−0.62) were used as model drugs. All of the model drugs were released rapidly from the potato starch film in PBS pH 7.4 with and without α-amylase in the dissolution medium (t50{\%} varied from 0.17 to 3.37 h). When compared to the potato starch film, all of the studied drugs were released at a substantially slower rate from the SA films in the corresponding mediums. The release of the smaller drugs (sotalol, timolol) from the SA films was faster than that of the macromolecules (FITC-dextran, BSA). Furthermore, sotalol was released faster than the more lipohilic timolol from the SA films. Release of macromolecules from the SA films was biphasic with and without α-amylase in the dissolution medium: an initial fast release phase was followed by a slower release phase (SA DS 1.9) or no release occurred after the initial phase (SA DS 2.6). All of the drugs were released faster from the SA DS 1.9 film than the weight loss of the film itself. When compared to the SA DS 1.9 film, the model drugs (except sotalol) were released slower from the SA DS 2.6 film. The macromolecule release from the SA DS 2.6 film was erosion-controlled. The weight loss of the SA DS 2.6 film was slow with and without α-amylase in the incubation medium. The present results show that acetylation of potato starch can substantially retard drug release. The drug release profiles may be controlled by the degree of substitution, since drug release from the SA DS 1.9 film was faster than the corresponding release from the SA DS 2.6 film.",
keywords = "starch-acetate, controlled drug release, alpha-amylase, molecular weight, lipophilicity, biopolymers",
author = "Laura Tuovinen and Soili Peltonen and Kristiina J{\"a}rvinen",
year = "2003",
doi = "10.1016/S0168-3659(03)00259-1",
language = "English",
volume = "91",
pages = "345--354",
journal = "Journal of Controlled Release",
issn = "0168-3659",
publisher = "Elsevier",
number = "3",

}

Tuovinen, L, Peltonen, S & Järvinen, K 2003, 'Drug release from starch-acetate films', Journal of Controlled Release, vol. 91, no. 3, pp. 345-354. https://doi.org/10.1016/S0168-3659(03)00259-1

Drug release from starch-acetate films. / Tuovinen, Laura (Corresponding Author); Peltonen, Soili; Järvinen, Kristiina.

In: Journal of Controlled Release, Vol. 91, No. 3, 2003, p. 345-354.

Research output: Contribution to journalArticleScientificpeer-review

TY - JOUR

T1 - Drug release from starch-acetate films

AU - Tuovinen, Laura

AU - Peltonen, Soili

AU - Järvinen, Kristiina

PY - 2003

Y1 - 2003

N2 - The aim of the present work was to compare the drug release rates from the native and acetylated starches. The average degree of acetyl substitution per glucose residue of potato starch was either 1.9 (SA DS 1.9) or 2.6 (SA DS 2.6). Bovine serum albumin (BSA) (mol. wt. 68,000), FITC-dextran (mol. wt. 4400), timolol (mol. wt. 332, log P=1.91) and sotalol–HCl (mol. wt. 308, log P=−0.62) were used as model drugs. All of the model drugs were released rapidly from the potato starch film in PBS pH 7.4 with and without α-amylase in the dissolution medium (t50% varied from 0.17 to 3.37 h). When compared to the potato starch film, all of the studied drugs were released at a substantially slower rate from the SA films in the corresponding mediums. The release of the smaller drugs (sotalol, timolol) from the SA films was faster than that of the macromolecules (FITC-dextran, BSA). Furthermore, sotalol was released faster than the more lipohilic timolol from the SA films. Release of macromolecules from the SA films was biphasic with and without α-amylase in the dissolution medium: an initial fast release phase was followed by a slower release phase (SA DS 1.9) or no release occurred after the initial phase (SA DS 2.6). All of the drugs were released faster from the SA DS 1.9 film than the weight loss of the film itself. When compared to the SA DS 1.9 film, the model drugs (except sotalol) were released slower from the SA DS 2.6 film. The macromolecule release from the SA DS 2.6 film was erosion-controlled. The weight loss of the SA DS 2.6 film was slow with and without α-amylase in the incubation medium. The present results show that acetylation of potato starch can substantially retard drug release. The drug release profiles may be controlled by the degree of substitution, since drug release from the SA DS 1.9 film was faster than the corresponding release from the SA DS 2.6 film.

AB - The aim of the present work was to compare the drug release rates from the native and acetylated starches. The average degree of acetyl substitution per glucose residue of potato starch was either 1.9 (SA DS 1.9) or 2.6 (SA DS 2.6). Bovine serum albumin (BSA) (mol. wt. 68,000), FITC-dextran (mol. wt. 4400), timolol (mol. wt. 332, log P=1.91) and sotalol–HCl (mol. wt. 308, log P=−0.62) were used as model drugs. All of the model drugs were released rapidly from the potato starch film in PBS pH 7.4 with and without α-amylase in the dissolution medium (t50% varied from 0.17 to 3.37 h). When compared to the potato starch film, all of the studied drugs were released at a substantially slower rate from the SA films in the corresponding mediums. The release of the smaller drugs (sotalol, timolol) from the SA films was faster than that of the macromolecules (FITC-dextran, BSA). Furthermore, sotalol was released faster than the more lipohilic timolol from the SA films. Release of macromolecules from the SA films was biphasic with and without α-amylase in the dissolution medium: an initial fast release phase was followed by a slower release phase (SA DS 1.9) or no release occurred after the initial phase (SA DS 2.6). All of the drugs were released faster from the SA DS 1.9 film than the weight loss of the film itself. When compared to the SA DS 1.9 film, the model drugs (except sotalol) were released slower from the SA DS 2.6 film. The macromolecule release from the SA DS 2.6 film was erosion-controlled. The weight loss of the SA DS 2.6 film was slow with and without α-amylase in the incubation medium. The present results show that acetylation of potato starch can substantially retard drug release. The drug release profiles may be controlled by the degree of substitution, since drug release from the SA DS 1.9 film was faster than the corresponding release from the SA DS 2.6 film.

KW - starch-acetate

KW - controlled drug release

KW - alpha-amylase

KW - molecular weight

KW - lipophilicity

KW - biopolymers

U2 - 10.1016/S0168-3659(03)00259-1

DO - 10.1016/S0168-3659(03)00259-1

M3 - Article

VL - 91

SP - 345

EP - 354

JO - Journal of Controlled Release

JF - Journal of Controlled Release

SN - 0168-3659

IS - 3

ER -