Abstract
The purpose of this study was to correlate the early levels of glial fibrillary acidic protein (GFAP) and neurofilament light protein (NF-L) with outcome in patients with mild traumatic brain injury (mTBI). A total of 107 patients with mTBI (Glasgow Coma Scale ≥13) who had blood samples for GFAP and NF-L available within 24 h of arrival were included. Patients with mTBI were divided into computed tomography (CT)-positive and CT-negative groups. Glasgow Outcome Scale-Extended (GOSE) was used to assess the outcome. Outcomes were defined as complete (GOSE 8) versus incomplete (GOSE <8), and favorable (GOSE 5-8) versus unfavorable (GOSE 1-4). GFAP and NF-L concentrations in blood were measured using ultrasensitive single molecule array technology. Patients with incomplete recovery had significantly higher levels of NF-L compared with those with complete recovery (p = 0.005). The levels of GFAP and NF-L were significantly higher in patients with unfavorable outcome than in patients with favorable outcome (p = 0.002 for GFAP and p < 0.001 for NF-L). For predicting favorable outcome, the area under the receiver operating characteristic curve for GFAP and NF-L was 0.755 and 0.826, respectively. In a multi-variate logistic regression model, the level of NF-L was still a significant predictor for complete recovery (odds ratio [OR] = 1.008; 95% confidence interval [CI], 1.000-1.016). Moreover, the level of NF-L was a significant predictor for complete recovery in CT-positive patients (OR = 1.009; 95% CI, 1.001-1.016). The early levels of GFAP and NF-L are significantly correlated with the outcome in patients with mTBI. The level of NF-L within 24 h from arrival has a significant predictive value in mTBI also in a multi-variate model.
Original language | English |
---|---|
Pages (from-to) | 1551-1560 |
Journal | Journal of Neurotrauma |
Volume | 36 |
Issue number | 10 |
Early online date | 8 Jan 2019 |
DOIs | |
Publication status | Published - 15 May 2019 |
MoE publication type | A1 Journal article-refereed |
Funding
This work was partially funded by the European Commission under the 7th Framework Programme (FP7-270259-TBIcare), In-tegra EANS Research Grant (IH), University of Turku Graduate School funding (MM), Government’s Special Financial Transfer tied to academic research in Health Sciences (Finland; JPP), Emil Aaltonen Foundation sr ( JPP), Finnish Brain Foundation sr ( JPP), and NIHR Research Fellowship (PJH). VFJN is funded by an Academy of Medical Sciences/The Health Foundation Clinician Scientist Fellowship. HZ is a Wallenberg Academy Fellow and holds grants from the Swedish and European Research Councils. KB holds the Torsten Söderberg Professorship in Medicine, awarded by the Royal Swedish Academy of Sciences, and holds grants from the Swedish Research Council.
Keywords
- biomarkes
- traumatic brain injury
- outcome measures