TY - JOUR
T1 - Effect of energetic ions on edge-localized modes in tokamak plasmas
AU - Dominguez-Palacios, J.
AU - Futatani, S.
AU - Garcia-Munoz, M.
AU - Jansen van Vuuren, A.
AU - Viezzer, E.
AU - Gonzalez-Martin, J.
AU - Toscano-Jimenez, M.
AU - Oyola, P.
AU - Todo, Y.
AU - Suzuki, Y.
AU - Sanchis, L.
AU - Rueda-Rueda, J.
AU - Galdon-Quiroga, J.
AU - Hidalgo-Salaverri, J.
AU - Chen, H.
AU - Rivero-Rodriguez, J. F.
AU - Velarde, L.
AU - Zoletnik, S.
AU - Zohm, H.
AU - Zito, A.
AU - Zimmermann, C. F.B.
AU - Zilker, M.
AU - Zibrov, A.
AU - Zholobenko, W.
AU - Zhang, W.
AU - Zehetbauer, T.
AU - Zammuto, I.
AU - Zagorski, R.
AU - Yu, Q.
AU - You, C.
AU - Yang, Q.
AU - Wolfrum, E.
AU - Wolf, R.
AU - Wischmeier, M.
AU - Wiringer, B.
AU - Willensdorfer, M.
AU - White, A. E.
AU - Wendler, D.
AU - Weiland, M.
AU - et al.
AU - Tala, Tuomas
AU - Snicker, A.
AU - Salmi, Antti
AU - Liu, Y.
AU - Likonen, Jari
AU - Lahtinen, A.
AU - Karhunen, J.
AU - Hakola, A. H.
AU - Särkimäki, K.
AU - Liu, F.
AU - ASDEX Upgrade Team
AU - EUROfusion MST1 Team
PY - 2025
Y1 - 2025
N2 - The most efficient and promising operational regime for the International Thermonuclear Experimental Reactor tokamak is the high-confinement mode. In this regime, however, periodic relaxations of the plasma edge can occur. These edge-localized modes pose a threat to the integrity of the fusion device. Here we reveal the strong impact of energetic ions on the spatio-temporal structure of edge-localized modes in tokamaks using nonlinear hybrid kinetic–magnetohydrodynamic simulations. A resonant interaction between the fast ions at the plasma edge and the electromagnetic perturbations from the edge-localized mode leads to an energy and momentum exchange. Energetic ions modify, for example, the amplitude, frequency spectrum and crash timing of edge-localized modes. The simulations reproduce some observations that feature abrupt and large edge-localized mode crashes. The results indicate that, in the International Thermonuclear Experimental Reactor, a strong interaction between the fusion-born alpha particles and ions from neutral beam injection, a main heating and fast particle source, is expected with predicted edge-localized mode perturbations. This work advances the understanding of the physics underlying edge-localized mode crashes in the presence of energetic particles and highlights the importance of including energetic ion kinetic effects in the optimization of edge-localized mode control techniques and regimes that are free of such modes.
AB - The most efficient and promising operational regime for the International Thermonuclear Experimental Reactor tokamak is the high-confinement mode. In this regime, however, periodic relaxations of the plasma edge can occur. These edge-localized modes pose a threat to the integrity of the fusion device. Here we reveal the strong impact of energetic ions on the spatio-temporal structure of edge-localized modes in tokamaks using nonlinear hybrid kinetic–magnetohydrodynamic simulations. A resonant interaction between the fast ions at the plasma edge and the electromagnetic perturbations from the edge-localized mode leads to an energy and momentum exchange. Energetic ions modify, for example, the amplitude, frequency spectrum and crash timing of edge-localized modes. The simulations reproduce some observations that feature abrupt and large edge-localized mode crashes. The results indicate that, in the International Thermonuclear Experimental Reactor, a strong interaction between the fusion-born alpha particles and ions from neutral beam injection, a main heating and fast particle source, is expected with predicted edge-localized mode perturbations. This work advances the understanding of the physics underlying edge-localized mode crashes in the presence of energetic particles and highlights the importance of including energetic ion kinetic effects in the optimization of edge-localized mode control techniques and regimes that are free of such modes.
UR - http://www.scopus.com/inward/record.url?scp=85214350566&partnerID=8YFLogxK
U2 - 10.1038/s41567-024-02715-6
DO - 10.1038/s41567-024-02715-6
M3 - Article
AN - SCOPUS:85214350566
SN - 1745-2473
VL - 21
SP - 43
EP - 51
JO - Nature Physics
JF - Nature Physics
ER -