Effect of high pressure treatment and enzymes on bilberry juice extraction

Martina Lille, Annikka Mustranta, Mirja Mokkila, Kaisa Poutanen

Research output: Contribution to conferenceConference PosterScientific

Abstract

The plant cell membrane permeabilizing action of high pressure may be utilised in juice processing to improve juice yield and the amount of phenolic compounds released into the juice (1, 2). The reactions of the cell wall degrading enzymes used to improve yields in conventional juice processing, may be inhibited or enhanced by high pressure treatment (3). In the first part of this work the effect of high pressure treatment of bilberry pulp on juice yield and phenolic content was studied. The juice yield or the content of phenolic compounds in the juice was not improved by high pressure treatment. The juice yield tended to decrease with increasing pressure, even though mechanical damage is expected to increase with increasing pressure. The work was continued by evaluating the possibilities of utilising the high pressure technology as part of the enzyme-aided juice production process. Three different types of processes were investigated. In the first process the bilberry pulp was high pressure treated together with added cell wall degrading enzymes. In the second process the pulp was high pressure treated without added enzymes before conventional enzyme treatment (2 h at 45°C). In the third investigated process the bilberry pulp was first conventionally enzyme treated and thereafter high pressure treated. The use of high pressure (50-600 MPa) was not beneficial in any of the studied cases, as the yield or total phenolic content of the obtained juices was not significantly improved. One reason for the reduced juice yields after high pressure treatment may be the gelatination of the soluble pectins that are released from the berry matrix during pulping and pressurization. The pectin depolymerising enzyme polygalacturonase is according to literature easily inactivated at moderate pressures. Pectinmethylesterase, which produces demethylated pectin that forms gels with calcium, is known to be much more pressure resistant and can even be stabilized in the pressure range studied in this work. With increasing viscosity of the berry pulp the extraction of phenolic compounds becomes more difficult. Our future work will concentrate on finding a way to utilise the high pressure technology for mechanical disruption of the berry matrix without increasing the viscosity of the pulp too much. REFERENCES 1. Dornenburg, H. & Knorr, D.: Food Biotechnology 7, 1 (1993). 2. Knorr, D.: Journal of Food Engineering 56, 2-3 (2003). 3. Hendrickx, M., Ludikhuyze, L., Van den Broeck, I. & Weemaes, C.: Trends in Food Science 9, 5 (1998).
Original languageEnglish
Publication statusPublished - 2004
Event2nd International Conference on Biocatalysis of Food and Drinks - Stuttgart, Germany
Duration: 19 Sep 200422 Sep 2004

Conference

Conference2nd International Conference on Biocatalysis of Food and Drinks
CountryGermany
CityStuttgart
Period19/09/0422/09/04

Fingerprint

bilberries
high pressure treatment
juices
enzymes
pulp
pectins
small fruits
phenolic compounds
viscosity
food biotechnology
cell walls
pulping
mechanical damage
pectinesterase
enzymatic treatment
polygalacturonase
food technology
food science
cell membranes

Keywords

  • high pressure
  • juice
  • enzymes
  • bilberry

Cite this

Lille, M., Mustranta, A., Mokkila, M., & Poutanen, K. (2004). Effect of high pressure treatment and enzymes on bilberry juice extraction. Poster session presented at 2nd International Conference on Biocatalysis of Food and Drinks, Stuttgart, Germany.
Lille, Martina ; Mustranta, Annikka ; Mokkila, Mirja ; Poutanen, Kaisa. / Effect of high pressure treatment and enzymes on bilberry juice extraction. Poster session presented at 2nd International Conference on Biocatalysis of Food and Drinks, Stuttgart, Germany.
@conference{084a1a6f40c84ef0965d16e6d2bb27ac,
title = "Effect of high pressure treatment and enzymes on bilberry juice extraction",
abstract = "The plant cell membrane permeabilizing action of high pressure may be utilised in juice processing to improve juice yield and the amount of phenolic compounds released into the juice (1, 2). The reactions of the cell wall degrading enzymes used to improve yields in conventional juice processing, may be inhibited or enhanced by high pressure treatment (3). In the first part of this work the effect of high pressure treatment of bilberry pulp on juice yield and phenolic content was studied. The juice yield or the content of phenolic compounds in the juice was not improved by high pressure treatment. The juice yield tended to decrease with increasing pressure, even though mechanical damage is expected to increase with increasing pressure. The work was continued by evaluating the possibilities of utilising the high pressure technology as part of the enzyme-aided juice production process. Three different types of processes were investigated. In the first process the bilberry pulp was high pressure treated together with added cell wall degrading enzymes. In the second process the pulp was high pressure treated without added enzymes before conventional enzyme treatment (2 h at 45°C). In the third investigated process the bilberry pulp was first conventionally enzyme treated and thereafter high pressure treated. The use of high pressure (50-600 MPa) was not beneficial in any of the studied cases, as the yield or total phenolic content of the obtained juices was not significantly improved. One reason for the reduced juice yields after high pressure treatment may be the gelatination of the soluble pectins that are released from the berry matrix during pulping and pressurization. The pectin depolymerising enzyme polygalacturonase is according to literature easily inactivated at moderate pressures. Pectinmethylesterase, which produces demethylated pectin that forms gels with calcium, is known to be much more pressure resistant and can even be stabilized in the pressure range studied in this work. With increasing viscosity of the berry pulp the extraction of phenolic compounds becomes more difficult. Our future work will concentrate on finding a way to utilise the high pressure technology for mechanical disruption of the berry matrix without increasing the viscosity of the pulp too much. REFERENCES 1. Dornenburg, H. & Knorr, D.: Food Biotechnology 7, 1 (1993). 2. Knorr, D.: Journal of Food Engineering 56, 2-3 (2003). 3. Hendrickx, M., Ludikhuyze, L., Van den Broeck, I. & Weemaes, C.: Trends in Food Science 9, 5 (1998).",
keywords = "high pressure, juice, enzymes, bilberry",
author = "Martina Lille and Annikka Mustranta and Mirja Mokkila and Kaisa Poutanen",
year = "2004",
language = "English",
note = "2nd International Conference on Biocatalysis of Food and Drinks ; Conference date: 19-09-2004 Through 22-09-2004",

}

Lille, M, Mustranta, A, Mokkila, M & Poutanen, K 2004, 'Effect of high pressure treatment and enzymes on bilberry juice extraction' 2nd International Conference on Biocatalysis of Food and Drinks, Stuttgart, Germany, 19/09/04 - 22/09/04, .

Effect of high pressure treatment and enzymes on bilberry juice extraction. / Lille, Martina; Mustranta, Annikka; Mokkila, Mirja; Poutanen, Kaisa.

2004. Poster session presented at 2nd International Conference on Biocatalysis of Food and Drinks, Stuttgart, Germany.

Research output: Contribution to conferenceConference PosterScientific

TY - CONF

T1 - Effect of high pressure treatment and enzymes on bilberry juice extraction

AU - Lille, Martina

AU - Mustranta, Annikka

AU - Mokkila, Mirja

AU - Poutanen, Kaisa

PY - 2004

Y1 - 2004

N2 - The plant cell membrane permeabilizing action of high pressure may be utilised in juice processing to improve juice yield and the amount of phenolic compounds released into the juice (1, 2). The reactions of the cell wall degrading enzymes used to improve yields in conventional juice processing, may be inhibited or enhanced by high pressure treatment (3). In the first part of this work the effect of high pressure treatment of bilberry pulp on juice yield and phenolic content was studied. The juice yield or the content of phenolic compounds in the juice was not improved by high pressure treatment. The juice yield tended to decrease with increasing pressure, even though mechanical damage is expected to increase with increasing pressure. The work was continued by evaluating the possibilities of utilising the high pressure technology as part of the enzyme-aided juice production process. Three different types of processes were investigated. In the first process the bilberry pulp was high pressure treated together with added cell wall degrading enzymes. In the second process the pulp was high pressure treated without added enzymes before conventional enzyme treatment (2 h at 45°C). In the third investigated process the bilberry pulp was first conventionally enzyme treated and thereafter high pressure treated. The use of high pressure (50-600 MPa) was not beneficial in any of the studied cases, as the yield or total phenolic content of the obtained juices was not significantly improved. One reason for the reduced juice yields after high pressure treatment may be the gelatination of the soluble pectins that are released from the berry matrix during pulping and pressurization. The pectin depolymerising enzyme polygalacturonase is according to literature easily inactivated at moderate pressures. Pectinmethylesterase, which produces demethylated pectin that forms gels with calcium, is known to be much more pressure resistant and can even be stabilized in the pressure range studied in this work. With increasing viscosity of the berry pulp the extraction of phenolic compounds becomes more difficult. Our future work will concentrate on finding a way to utilise the high pressure technology for mechanical disruption of the berry matrix without increasing the viscosity of the pulp too much. REFERENCES 1. Dornenburg, H. & Knorr, D.: Food Biotechnology 7, 1 (1993). 2. Knorr, D.: Journal of Food Engineering 56, 2-3 (2003). 3. Hendrickx, M., Ludikhuyze, L., Van den Broeck, I. & Weemaes, C.: Trends in Food Science 9, 5 (1998).

AB - The plant cell membrane permeabilizing action of high pressure may be utilised in juice processing to improve juice yield and the amount of phenolic compounds released into the juice (1, 2). The reactions of the cell wall degrading enzymes used to improve yields in conventional juice processing, may be inhibited or enhanced by high pressure treatment (3). In the first part of this work the effect of high pressure treatment of bilberry pulp on juice yield and phenolic content was studied. The juice yield or the content of phenolic compounds in the juice was not improved by high pressure treatment. The juice yield tended to decrease with increasing pressure, even though mechanical damage is expected to increase with increasing pressure. The work was continued by evaluating the possibilities of utilising the high pressure technology as part of the enzyme-aided juice production process. Three different types of processes were investigated. In the first process the bilberry pulp was high pressure treated together with added cell wall degrading enzymes. In the second process the pulp was high pressure treated without added enzymes before conventional enzyme treatment (2 h at 45°C). In the third investigated process the bilberry pulp was first conventionally enzyme treated and thereafter high pressure treated. The use of high pressure (50-600 MPa) was not beneficial in any of the studied cases, as the yield or total phenolic content of the obtained juices was not significantly improved. One reason for the reduced juice yields after high pressure treatment may be the gelatination of the soluble pectins that are released from the berry matrix during pulping and pressurization. The pectin depolymerising enzyme polygalacturonase is according to literature easily inactivated at moderate pressures. Pectinmethylesterase, which produces demethylated pectin that forms gels with calcium, is known to be much more pressure resistant and can even be stabilized in the pressure range studied in this work. With increasing viscosity of the berry pulp the extraction of phenolic compounds becomes more difficult. Our future work will concentrate on finding a way to utilise the high pressure technology for mechanical disruption of the berry matrix without increasing the viscosity of the pulp too much. REFERENCES 1. Dornenburg, H. & Knorr, D.: Food Biotechnology 7, 1 (1993). 2. Knorr, D.: Journal of Food Engineering 56, 2-3 (2003). 3. Hendrickx, M., Ludikhuyze, L., Van den Broeck, I. & Weemaes, C.: Trends in Food Science 9, 5 (1998).

KW - high pressure

KW - juice

KW - enzymes

KW - bilberry

M3 - Conference Poster

ER -

Lille M, Mustranta A, Mokkila M, Poutanen K. Effect of high pressure treatment and enzymes on bilberry juice extraction. 2004. Poster session presented at 2nd International Conference on Biocatalysis of Food and Drinks, Stuttgart, Germany.