Effect of pH and temperature on fibrous structure formation of plant proteins during high-moisture extrusion processing

Research output: Contribution to journalArticleScientificpeer-review

Abstract

This study investigated the effect of pH on fibrous structure formation (protein alignment) during high-moisture extrusion processing of gluten, rice protein, as well as pea protein concentrate, and isolate. The pH of the raw material was shifted to 5 and 7 in water suspension with an acid or base and freeze-dried, after which, conductivity, solubility, water-holding capacity, particle size, and pH were measured. The pH-shifted raw materials were extruded at various temperatures (95–160 °C) and the extrudates were analysed for protein alignment (macro and microstructure), tensile strength, free thiol groups, and cooking properties. In general, all raw materials generated fibrous structure at lower temperatures (115–140 °C) at pH 7 than at pH 5 (135–160 °C). Higher pH and temperature values led to an increased tensile strength and pronounced protein alignment. No such unambiguous link could be observed between the raw material properties and enhanced structure formation. This study showed that the structure formation of the extrudate can be positively influenced by increasing the pH of the raw material, which facilitates the plant protein structuring into appealing meat analogue products.

Original languageEnglish
Article number111089
JournalFood Research International
Volume156
DOIs
Publication statusPublished - 5 Mar 2022
MoE publication typeA1 Journal article-refereed

Keywords

  • Disulphide bond formation
  • Extrusion
  • Fibrous structure
  • Meat alternative
  • pH shift
  • Plant proteins
  • Protein alignment

Fingerprint

Dive into the research topics of 'Effect of pH and temperature on fibrous structure formation of plant proteins during high-moisture extrusion processing'. Together they form a unique fingerprint.

Cite this