Effect of phenols extraction on the behavior of Ni-spinel derived catalyst for raw bio-oil steam reforming

B. Valle (Corresponding Author), N. García-Gómez, A. Arandia, A. Remiro, J. Bilbao, A.G. Gayubo

Research output: Contribution to journalArticleScientificpeer-review

34 Citations (Scopus)


Alkyl-phenols and hydroxy- or methoxy-phenols (e.g., catechols, guaiacols and syringols)tend to polymerize into carbonaceous structures, causing clogging of reaction equipment and high coke deposition during bio-oil steam reforming (SR). In this work, removal of these phenolic compounds from raw bio-oil was addressed by accelerated aging and liquid-liquid extraction methods. The solvent-anti-solvent extraction with dichloromethane and water was suitable for obtaining a treated bio-oil appropriate for SR. The effect that phenols extraction has on the stability and regenerability of a NiAl 2O 4 spinel catalyst was studied by conducting reaction-regeneration cycles. Operating conditions were: 700 °C; S/C, 6; space-time, 0.15 g catalysth/g bio-oil (reaction step), and in situ coke combustion at 850 °C for 4 h (regeneration step). Fresh, deactivated and regenerated catalyst samples were analyzed by temperature programmed oxidation (TPO), temperature programmed reduction (TPR)and X-ray diffraction (XRD). Stability of the Ni-spinel derived catalyst was significantly improved by removing phenols due to attenuation of both coke deposition and Ni sintering. Regenerability of this catalyst was also slightly improved when reforming the treated bio-oil.

Original languageEnglish
Pages (from-to)12593-12603
JournalInternational Journal of Hydrogen Energy
Issue number25
Publication statusPublished - 2019
MoE publication typeA1 Journal article-refereed


  • Bio-oil
  • Hydrogen
  • Ni-spinel
  • Phenols
  • Regenerability
  • Stability


Dive into the research topics of 'Effect of phenols extraction on the behavior of Ni-spinel derived catalyst for raw bio-oil steam reforming'. Together they form a unique fingerprint.

Cite this