Effect of surfactant type and sonication energy on the electrical conductivity properties of nanocellulose-CNT nanocomposite films

Sanna Siljander, Pasi Keinänen, Anna Räty, Karthik Ram Ramakrishnan, Sampo Tuukkanen, Vesa Kunnari, Ali Harlin, Jyrki Vuorinen, Mikko Kanerva

    Research output: Contribution to journalArticleScientificpeer-review

    33 Citations (Scopus)


    We present a detailed study on the influence of sonication energy and surfactant type on the electrical conductivity of nanocellulose-carbon nanotube (NFC-CNT) nanocomposite films. The study was made using a minimum amount of processing steps, chemicals and materials, to optimize the conductivity properties of free-standing flexible nanocomposite films. In general, the NFC-CNT film preparation process is sensitive concerning the dispersing phase of CNTs into a solution with NFC. In our study, we used sonication to carry out the dispersing phase of processing in the presence of surfactant. In the final phase, the films were prepared from the dispersion using centrifugal cast molding. The solid films were analyzed regarding their electrical conductivity using a four-probe measuring technique. We also characterized how conductivity properties were enhanced when surfactant was removed from nanocomposite films; to our knowledge this has not been reported previously. The results of our study indicated that the optimization of the surfactant type clearly affected the formation of freestanding films. The effect of sonication energy was significant in terms of conductivity. Using a relatively low 16 wt. % concentration of multiwall carbon nanotubes we achieved the highest conductivity value of 8.4 S/cm for nanocellulose-CNT films ever published in the current literature. This was achieved by optimizing the surfactant type and sonication energy per dry mass. Additionally, to further increase the conductivity, we defined a preparation step to remove the used surfactant from the final nanocomposite structure.

    Original languageEnglish
    Article number1819
    JournalInternational Journal of Molecular Sciences
    Issue number6
    Publication statusPublished - 20 Jun 2018
    MoE publication typeA1 Journal article-refereed


    • Carbon nanotubes
    • Conductivity
    • Nanocellulose
    • Nanocomposite
    • Surfactant


    Dive into the research topics of 'Effect of surfactant type and sonication energy on the electrical conductivity properties of nanocellulose-CNT nanocomposite films'. Together they form a unique fingerprint.

    Cite this