Abstract
Original language  English 

Qualification  Doctor Degree 
Awarding Institution 

Supervisors/Advisors 

Award date  24 Aug 2004 
Place of Publication  Espoo 
Publisher  
Print ISBNs  9513864049 
Electronic ISBNs  9513864057 
Publication status  Published  2004 
MoE publication type  G5 Doctoral dissertation (article) 
Fingerprint
Keywords
 unbalanced magnetic pull
 electromechanical interaction
 rotors
 electric motors
 vibration characteristics
Cite this
}
Electromechanical interaction in rotordynamics of cage induction motors : Dissertation. / Holopainen, Timo P.
Espoo : VTT Technical Research Centre of Finland, 2004. 86 p.Research output: Thesis › Dissertation › Collection of Articles
TY  THES
T1  Electromechanical interaction in rotordynamics of cage induction motors
T2  Dissertation
AU  Holopainen, Timo P
N1  Project code: V1SU00856
PY  2004
Y1  2004
N2  Electromagnetic fields in the air gap of an electric machine produce electromagnetic forces between the rotor and stator. The total force exerted on the rotor due to the eccentric rotor position is called the unbalanced magnetic pull. This eccentricity force is directed roughly over the shortest air gap. At low frequencies, the vibration amplitudes of flexural modes may be large enough to couple the electromagnetic system to the mechanical one. This electromechanical interaction changes the vibration behaviour of the system. The main purpose of this dissertation is to reveal the main rotordynamic consequences induced by the electromechanical interaction in cage induction motors. Another goal is to achieve this by deriving a simple and representative electromechanical rotor model with physical variables and parameters. In this study, a new parametric model was derived for the unbalanced magnetic pull induced by an arbitrary rotor motion in transient operation. The parameters of this model can be determined analytically from the basis of the machine characteristics or estimated numerically as in this study. To estimate the parameters, an efficient numerical method was developed from the analysis of impulse response. The numerical results showed that the simple electromagnetic force model, together with the estimated parameters, predicts the unbalanced magnetic pull fairly accurately. An electromechanical rotor model was derived by combining the Jeffcott rotor model with the simple electromagnetic force model, including two additional variables for the harmonic currents of the rotor cage. Applying this model, the rotordynamic effects of electromechanical interaction were studied. Three induction motors were used in the numerical examples. The results obtained show that the electromechanical interaction may decrease the flexural frequencies of the rotor, induce additional damping or cause rotordynamic instability. These interaction effects are most significant in motors operating at, or near, the first flexural critical speed. Excluding the potential rotordynamic instability, the numerical results indicate that the electromechanical interaction effectively reduces the unbalance response close to the first flexural critical speed.
AB  Electromagnetic fields in the air gap of an electric machine produce electromagnetic forces between the rotor and stator. The total force exerted on the rotor due to the eccentric rotor position is called the unbalanced magnetic pull. This eccentricity force is directed roughly over the shortest air gap. At low frequencies, the vibration amplitudes of flexural modes may be large enough to couple the electromagnetic system to the mechanical one. This electromechanical interaction changes the vibration behaviour of the system. The main purpose of this dissertation is to reveal the main rotordynamic consequences induced by the electromechanical interaction in cage induction motors. Another goal is to achieve this by deriving a simple and representative electromechanical rotor model with physical variables and parameters. In this study, a new parametric model was derived for the unbalanced magnetic pull induced by an arbitrary rotor motion in transient operation. The parameters of this model can be determined analytically from the basis of the machine characteristics or estimated numerically as in this study. To estimate the parameters, an efficient numerical method was developed from the analysis of impulse response. The numerical results showed that the simple electromagnetic force model, together with the estimated parameters, predicts the unbalanced magnetic pull fairly accurately. An electromechanical rotor model was derived by combining the Jeffcott rotor model with the simple electromagnetic force model, including two additional variables for the harmonic currents of the rotor cage. Applying this model, the rotordynamic effects of electromechanical interaction were studied. Three induction motors were used in the numerical examples. The results obtained show that the electromechanical interaction may decrease the flexural frequencies of the rotor, induce additional damping or cause rotordynamic instability. These interaction effects are most significant in motors operating at, or near, the first flexural critical speed. Excluding the potential rotordynamic instability, the numerical results indicate that the electromechanical interaction effectively reduces the unbalance response close to the first flexural critical speed.
KW  unbalanced magnetic pull
KW  electromechanical interaction
KW  rotors
KW  electric motors
KW  vibration characteristics
M3  Dissertation
SN  9513864049
T3  VTT Publications
PB  VTT Technical Research Centre of Finland
CY  Espoo
ER 