TY - JOUR
T1 - Energy and environmental performance from field operation of commercial-scale SOFC systems
AU - Gandiglio, Marta
AU - Marocco, Paolo
AU - Nieminen, Aki
AU - Santarelli, Massimo
AU - Kiviaho, Jari
PY - 2024/10/4
Y1 - 2024/10/4
N2 - Solid Oxide Fuel Cells (SOFCs) are capable of generating electrical and thermal power with very high conversion efficiency and almost no pollutant emissions into the atmosphere. Despite extensive literature on SOFC-based energy system models and experimental testing at the cell and short-stack level, there is currently a lack of performance data for SOFC modules under actual field conditions. To fill this gap, the present work investigates the energy and environmental performance of six SOFC modules, ranging in size from 10 to 60 kW, over thousands of hours of operation. These systems, supplied by the three leading SOFC manufacturers in Europe, have been installed and operated in different non-residential buildings worldwide, as part of the European Comsos project. The aim of this study is to establish a comprehensive set of field operation data to characterise commercial-scale SOFC systems. Specifically, raw data are processed to derived electrical and thermal efficiency maps, degradation rates and pollutant emissions, including particulate matter (PM), nitrogen oxides (NOx) and carbon monoxide (CO). A comparison with competing technologies is also provided to better highlight the potential benefits of adopting SOFC-based cogeneration systems. Values in the range of 51–61% were found for the system-level electrical efficiency under rated conditions. The electrical efficiency also remained consistently high across a wide modulation range (between 50% and 100% of rated power), with peak values reaching 65%. In addition, promising results were obtained for the average percentage loss in electrical efficiency, with a minimum value of 0.7%/1000 h. Regarding the environmental analysis, NOx and CO emissions were analysed at both constant and variable power output, proving to be impressively low across the entire modulation range. The same applies to PM concentrations, which were below ambient level. Overall, SOFCs demonstrated to be one of the best cogeneration solutions for commercial-scale systems (tens to hundreds of kW in size), from both an energy and environmental perspective. However, further reductions in costs and dedicated financial schemes are necessary for a widespread market penetration.
AB - Solid Oxide Fuel Cells (SOFCs) are capable of generating electrical and thermal power with very high conversion efficiency and almost no pollutant emissions into the atmosphere. Despite extensive literature on SOFC-based energy system models and experimental testing at the cell and short-stack level, there is currently a lack of performance data for SOFC modules under actual field conditions. To fill this gap, the present work investigates the energy and environmental performance of six SOFC modules, ranging in size from 10 to 60 kW, over thousands of hours of operation. These systems, supplied by the three leading SOFC manufacturers in Europe, have been installed and operated in different non-residential buildings worldwide, as part of the European Comsos project. The aim of this study is to establish a comprehensive set of field operation data to characterise commercial-scale SOFC systems. Specifically, raw data are processed to derived electrical and thermal efficiency maps, degradation rates and pollutant emissions, including particulate matter (PM), nitrogen oxides (NOx) and carbon monoxide (CO). A comparison with competing technologies is also provided to better highlight the potential benefits of adopting SOFC-based cogeneration systems. Values in the range of 51–61% were found for the system-level electrical efficiency under rated conditions. The electrical efficiency also remained consistently high across a wide modulation range (between 50% and 100% of rated power), with peak values reaching 65%. In addition, promising results were obtained for the average percentage loss in electrical efficiency, with a minimum value of 0.7%/1000 h. Regarding the environmental analysis, NOx and CO emissions were analysed at both constant and variable power output, proving to be impressively low across the entire modulation range. The same applies to PM concentrations, which were below ambient level. Overall, SOFCs demonstrated to be one of the best cogeneration solutions for commercial-scale systems (tens to hundreds of kW in size), from both an energy and environmental perspective. However, further reductions in costs and dedicated financial schemes are necessary for a widespread market penetration.
KW - Cogeneration
KW - Efficiency
KW - Field operation
KW - Fuel cell
KW - Pollutant emissions
KW - SOFC
UR - http://www.scopus.com/inward/record.url?scp=85202536953&partnerID=8YFLogxK
U2 - 10.1016/j.ijhydene.2024.08.332
DO - 10.1016/j.ijhydene.2024.08.332
M3 - Article
AN - SCOPUS:85202536953
SN - 0360-3199
VL - 85
SP - 997
EP - 1009
JO - International Journal of Hydrogen Energy
JF - International Journal of Hydrogen Energy
ER -