Abstract
The divertor configuration defines the power exhaust capabilities of DEMO as one of the major key design parameters and sets a number of requirements on the tokamak layout, including port sizes, poloidal field coil positions, and size of toroidal field coils. It also requires a corresponding configuration of plasma-facing components (PFCs) and a remote handling scheme to be able to handle the cassettes and associated in-vessel components (IVC) the configuration requires. There is a risk that the baseline ITER-like single-null (SN) divertor configuration cannot meet the PFC technology limits regarding power exhaust and first wall protection while achieving the target plasma performance requirements of DEMO or a future fusion power plant. Alternative magnetic configurations – double-null, snowflake, X-, and super-X – exist and potentially offer solutions to these risks and a route to achievable power handling in DEMO. But these options impose significant changes on machine architecture, increase the machine complexity and affect remote handling and plasma physics and so an integrated approach must be taken to assessing the feasibility of these options. In this paper we describe the work programme to assess the requirements for incorporating these configurations into DEMO.
Original language | English |
---|---|
Pages (from-to) | 2281-2284 |
Journal | Fusion Engineering and Design |
Volume | 146 |
Issue number | Part B |
DOIs | |
Publication status | Published - 1 Sept 2019 |
MoE publication type | A1 Journal article-refereed |
Funding
This work has been carried out within the framework of the EUROfusion Consortium and has received funding from the Euratom research and training programme 2014–2018 under grant agreement No. 633053.
Keywords
- DEMO
- Fusion power plant
- System modelling
- Systems studies
- Technology choices
- EUROfusion
- EURATOM