Abstract
Background: meso-Galactaric acid is a dicarboxylic acid that can be produced by the oxidation of d-galacturonic acid, the main constituent of pectin. Mould strains can be engineered to perform this oxidation by expressing the bacterial enzyme uronate dehydrogenase. In addition, the endogenous pathway for d-galacturonic acid catabolism has to be inactivated. The filamentous fungus Aspergillus niger would be a suitable strain for galactaric acid production since it is efficient in pectin hydrolysis, however, it is catabolizing the resulting galactaric acid via an unknown catabolic pathway.
Results: In this study, a transcriptomics approach was used to identify genes involved in galactaric acid catabolism. Several genes were deleted using CRISPR/Cas9 together with in vitro synthesized sgRNA. As a result, galactaric acid catabolism was disrupted. An engineered A. niger strain combining the disrupted galactaric and d-galacturonic acid catabolism with an expression of a heterologous uronate dehydrogenase produced galactaric acid from d-galacturonic acid. The resulting strain was also converting pectin-rich biomass to galactaric acid in a consolidated bioprocess.
Conclusions: In the present study, we demonstrated the use of CRISPR/Cas9 mediated gene deletion technology in A. niger in an metabolic engineering application. As a result, a strain for the efficient production of galactaric acid from d-galacturonic acid was generated. The present study highlights the usefulness of CRISPR/Cas9 technology in the metabolic engineering of filamentous fungi.
Results: In this study, a transcriptomics approach was used to identify genes involved in galactaric acid catabolism. Several genes were deleted using CRISPR/Cas9 together with in vitro synthesized sgRNA. As a result, galactaric acid catabolism was disrupted. An engineered A. niger strain combining the disrupted galactaric and d-galacturonic acid catabolism with an expression of a heterologous uronate dehydrogenase produced galactaric acid from d-galacturonic acid. The resulting strain was also converting pectin-rich biomass to galactaric acid in a consolidated bioprocess.
Conclusions: In the present study, we demonstrated the use of CRISPR/Cas9 mediated gene deletion technology in A. niger in an metabolic engineering application. As a result, a strain for the efficient production of galactaric acid from d-galacturonic acid was generated. The present study highlights the usefulness of CRISPR/Cas9 technology in the metabolic engineering of filamentous fungi.
Original language | English |
---|---|
Article number | 210 |
Journal | Microbial Cell Factories |
Volume | 15 |
DOIs | |
Publication status | Published - 2016 |
MoE publication type | A1 Journal article-refereed |
Keywords
- aspergillus niger
- metabolic engineering
- CRISPR
- pectin
- d-galacturonic acid
- galactaric acid
- mucic acid
- uronate dehydrogenase