Engineering models for softening and relaxation of Gr. 91 steel in creep-fatigue conditions

Stefan Holmström, Frits De Haan, Ulrich Föhrer, Rami Pohja, Jaromir Janousek

Research output: Contribution to journalArticleScientificpeer-review

2 Citations (Scopus)

Abstract

Purpose-There are a number of different approaches for calculating creep-fatigue (CF) damage for design, such as the French nuclear code RCC-MRx, the American ASME III NH and the British R5 assessment code. To acquire estimates for the CF damage, that are not overly conservative, both the cyclic material softening/ hardening and the potential changes in relaxation behavior have to be considered. The data presented here and models are an initial glimpse of the ongoing European FP7 project MATISSE effort to model the softening and relaxation behavior of Grade 91 steel under CF loading. The resulting models are used for calculating the relaxed stress at arbitrary location in the material cyclic softening curve. The initial test results show that softening of the material is not always detrimental. The initial model development and the pre-Assessment of the MATISSE data show that the relaxed stress can be robustly predicted with hold time, strain range and the cyclic life fraction as the main input parameters. The paper aims to discuss these issues. Design/methodology/approach-Engineering models have been developed for predicting cyclic softening and relaxation for Gr. 91 steel at 550 and 600°C. Findings-A simple engineering model can adequately predict the low cycle fatigue (LCF) and CF softening rates of Gr. 91 steel. Also a simple relaxation model was successfully defined for predicting relaxed stress of both virgin and cyclically softened material. Research limitations/implications-The data are not yet complete and the models will be updated when the complete set of data in the MATISSE project is available. Practical implications-The models described can be used for predicting P91 material softening in an arbitrary location (n/Nf0) of the LCF and CF cyclic life. Also the relaxed stress in the softened material can be estimated. Originality/value-The models are simple in nature but are able to estimate both material softening and relaxation in arbitrary location of the softening curve. This is the first time the Wilshire methodology has been applied on cyclic relaxation data.
Original languageEnglish
Pages (from-to)670-682
Number of pages13
JournalInternational Journal of Structural Integrity
Volume8
Issue number6
DOIs
Publication statusPublished - 1 Jan 2017
MoE publication typeA1 Journal article-refereed

Fingerprint

Creep
Fatigue of materials
Steel
Fatigue damage
Hardening

Keywords

  • creep-fatigue
  • cyclic softening
  • Gr. 91 steel
  • relaxation

Cite this

Holmström, Stefan ; De Haan, Frits ; Föhrer, Ulrich ; Pohja, Rami ; Janousek, Jaromir. / Engineering models for softening and relaxation of Gr. 91 steel in creep-fatigue conditions. In: International Journal of Structural Integrity. 2017 ; Vol. 8, No. 6. pp. 670-682.
@article{064c51d18c834a20af804bd69115e33c,
title = "Engineering models for softening and relaxation of Gr. 91 steel in creep-fatigue conditions",
abstract = "Purpose-There are a number of different approaches for calculating creep-fatigue (CF) damage for design, such as the French nuclear code RCC-MRx, the American ASME III NH and the British R5 assessment code. To acquire estimates for the CF damage, that are not overly conservative, both the cyclic material softening/ hardening and the potential changes in relaxation behavior have to be considered. The data presented here and models are an initial glimpse of the ongoing European FP7 project MATISSE effort to model the softening and relaxation behavior of Grade 91 steel under CF loading. The resulting models are used for calculating the relaxed stress at arbitrary location in the material cyclic softening curve. The initial test results show that softening of the material is not always detrimental. The initial model development and the pre-Assessment of the MATISSE data show that the relaxed stress can be robustly predicted with hold time, strain range and the cyclic life fraction as the main input parameters. The paper aims to discuss these issues. Design/methodology/approach-Engineering models have been developed for predicting cyclic softening and relaxation for Gr. 91 steel at 550 and 600°C. Findings-A simple engineering model can adequately predict the low cycle fatigue (LCF) and CF softening rates of Gr. 91 steel. Also a simple relaxation model was successfully defined for predicting relaxed stress of both virgin and cyclically softened material. Research limitations/implications-The data are not yet complete and the models will be updated when the complete set of data in the MATISSE project is available. Practical implications-The models described can be used for predicting P91 material softening in an arbitrary location (n/Nf0) of the LCF and CF cyclic life. Also the relaxed stress in the softened material can be estimated. Originality/value-The models are simple in nature but are able to estimate both material softening and relaxation in arbitrary location of the softening curve. This is the first time the Wilshire methodology has been applied on cyclic relaxation data.",
keywords = "creep-fatigue, cyclic softening, Gr. 91 steel, relaxation",
author = "Stefan Holmstr{\"o}m and {De Haan}, Frits and Ulrich F{\"o}hrer and Rami Pohja and Jaromir Janousek",
year = "2017",
month = "1",
day = "1",
doi = "10.1108/IJSI-02-2017-0010",
language = "English",
volume = "8",
pages = "670--682",
journal = "International Journal of Structural Integrity",
issn = "1757-9864",
publisher = "Emerald Publishing Limited",
number = "6",

}

Engineering models for softening and relaxation of Gr. 91 steel in creep-fatigue conditions. / Holmström, Stefan; De Haan, Frits; Föhrer, Ulrich; Pohja, Rami; Janousek, Jaromir.

In: International Journal of Structural Integrity, Vol. 8, No. 6, 01.01.2017, p. 670-682.

Research output: Contribution to journalArticleScientificpeer-review

TY - JOUR

T1 - Engineering models for softening and relaxation of Gr. 91 steel in creep-fatigue conditions

AU - Holmström, Stefan

AU - De Haan, Frits

AU - Föhrer, Ulrich

AU - Pohja, Rami

AU - Janousek, Jaromir

PY - 2017/1/1

Y1 - 2017/1/1

N2 - Purpose-There are a number of different approaches for calculating creep-fatigue (CF) damage for design, such as the French nuclear code RCC-MRx, the American ASME III NH and the British R5 assessment code. To acquire estimates for the CF damage, that are not overly conservative, both the cyclic material softening/ hardening and the potential changes in relaxation behavior have to be considered. The data presented here and models are an initial glimpse of the ongoing European FP7 project MATISSE effort to model the softening and relaxation behavior of Grade 91 steel under CF loading. The resulting models are used for calculating the relaxed stress at arbitrary location in the material cyclic softening curve. The initial test results show that softening of the material is not always detrimental. The initial model development and the pre-Assessment of the MATISSE data show that the relaxed stress can be robustly predicted with hold time, strain range and the cyclic life fraction as the main input parameters. The paper aims to discuss these issues. Design/methodology/approach-Engineering models have been developed for predicting cyclic softening and relaxation for Gr. 91 steel at 550 and 600°C. Findings-A simple engineering model can adequately predict the low cycle fatigue (LCF) and CF softening rates of Gr. 91 steel. Also a simple relaxation model was successfully defined for predicting relaxed stress of both virgin and cyclically softened material. Research limitations/implications-The data are not yet complete and the models will be updated when the complete set of data in the MATISSE project is available. Practical implications-The models described can be used for predicting P91 material softening in an arbitrary location (n/Nf0) of the LCF and CF cyclic life. Also the relaxed stress in the softened material can be estimated. Originality/value-The models are simple in nature but are able to estimate both material softening and relaxation in arbitrary location of the softening curve. This is the first time the Wilshire methodology has been applied on cyclic relaxation data.

AB - Purpose-There are a number of different approaches for calculating creep-fatigue (CF) damage for design, such as the French nuclear code RCC-MRx, the American ASME III NH and the British R5 assessment code. To acquire estimates for the CF damage, that are not overly conservative, both the cyclic material softening/ hardening and the potential changes in relaxation behavior have to be considered. The data presented here and models are an initial glimpse of the ongoing European FP7 project MATISSE effort to model the softening and relaxation behavior of Grade 91 steel under CF loading. The resulting models are used for calculating the relaxed stress at arbitrary location in the material cyclic softening curve. The initial test results show that softening of the material is not always detrimental. The initial model development and the pre-Assessment of the MATISSE data show that the relaxed stress can be robustly predicted with hold time, strain range and the cyclic life fraction as the main input parameters. The paper aims to discuss these issues. Design/methodology/approach-Engineering models have been developed for predicting cyclic softening and relaxation for Gr. 91 steel at 550 and 600°C. Findings-A simple engineering model can adequately predict the low cycle fatigue (LCF) and CF softening rates of Gr. 91 steel. Also a simple relaxation model was successfully defined for predicting relaxed stress of both virgin and cyclically softened material. Research limitations/implications-The data are not yet complete and the models will be updated when the complete set of data in the MATISSE project is available. Practical implications-The models described can be used for predicting P91 material softening in an arbitrary location (n/Nf0) of the LCF and CF cyclic life. Also the relaxed stress in the softened material can be estimated. Originality/value-The models are simple in nature but are able to estimate both material softening and relaxation in arbitrary location of the softening curve. This is the first time the Wilshire methodology has been applied on cyclic relaxation data.

KW - creep-fatigue

KW - cyclic softening

KW - Gr. 91 steel

KW - relaxation

UR - http://www.scopus.com/inward/record.url?scp=85037162653&partnerID=8YFLogxK

U2 - 10.1108/IJSI-02-2017-0010

DO - 10.1108/IJSI-02-2017-0010

M3 - Article

VL - 8

SP - 670

EP - 682

JO - International Journal of Structural Integrity

JF - International Journal of Structural Integrity

SN - 1757-9864

IS - 6

ER -