Environmental Degradation Effect of High-Temperature Water and Hydrogen on the Fracture Behavior of Low-Alloy Reactor Pressure Vessel Steels

Z. Que, H. P. Seifert, P. Spätig, A. Zhang, G. S. Rao, S. Ritter

Research output: Contribution to journalArticle in a proceedings journalScientificpeer-review

1 Citation (Scopus)


Structural integrity of reactor pressure vessel (RPV) in light water reactors (LWR) is of highest importance regarding operation safety and lifetime. The fracture behaviour of low-alloy RPV steels with different dynamic strain aging (DSA) & environmental assisted cracking (EAC) susceptibilities in simulated LWR environments was evaluated by elastic plastic fracture mechanics tests (EPFM) and by metallo- and fractographic post-test analysis. Exposure to high temperature water (HTW) environments at LWR temperatures revealed only moderated reductions in the fracture initiation and tearing resistance of low alloy RPV steels with high DSA or EAC susceptibility, accompanied with a moderate, but clear change in fracture morphology, which indicates the potential synergies of hydrogen/HTW embrittlement with DSA and EAC under suitable conditions. The most pronounced degradation effects occurred in a) RPV steels with high DSA susceptibility, where the fracture initiation and tearing resistance reduction increased with decreasing loading rate and were most pronounced in hydrogenated HTW and b) high sulphur steels with high EAC susceptibility in aggressive occluded crevice environment and with preceding fast EAC crack growth in oxygenated HTW. The moderate effects are due to the low hydrogen availability in HTW together with high density of fine-dispersed hydrogen traps in RPV steels. Stable ductile transgranular tearing by microvoid coalescence was the dominant failure mechanism in all environments with additional varying few % of secondary cracks, macrovoids and quasi-cleavage in HTW. The observed behavior suggests a combination of plastic strain localisation by the Hydrogen-enhanced Local Plasticity (HELP) mechanism, in synergy with DSA, and Hydrogen-enhanced Strain-induced Vacancies (HESIV) mechanism with additional minor contributions of Hydrogen-enhanced Decohesion Embrittlement (HEDE) mechanism.

Original languageEnglish
Pages (from-to)926-931
Number of pages6
JournalProcedia Structural Integrity
Publication statusPublished - 1 Jan 2018
MoE publication typeA4 Article in a conference publication
Event22nd European Conference on Fracture, ECF 2018 - Belgrade, Serbia
Duration: 25 Aug 201826 Aug 2018


  • Dynamic Strain Aging
  • Environmental Assisted Cracking
  • Fracture Resistance
  • Hydrogen Embrittlement
  • Low Alloy Steels


Dive into the research topics of 'Environmental Degradation Effect of High-Temperature Water and Hydrogen on the Fracture Behavior of Low-Alloy Reactor Pressure Vessel Steels'. Together they form a unique fingerprint.

Cite this