Abstract
The 2004 tracer experiment of JET with the injection of 13CH4 into H-mode plasma at the outer divertor has been modelled with the Monte Carlo impurity transport code ERO. EDGE2D solutions for inter-ELM and ELM-peak phases were used as plasma backgrounds. Local two-dimensional (2D) deposition patterns at the vertical outer divertor target plate were obtained for comparison with post-mortem surface analyses. ERO also provides emission profiles for comparison with radially resolved spectroscopic measurements. Modelling indicates that enhanced re-erosion of deposited carbon layers is essential in explaining the amount of local deposition. Assuming negligible effective sticking of hydrocarbons, the measured local deposition of 20–34% is reproduced if re-erosion of deposits is enhanced by a factor of 2.5–7 compared to graphite erosion. If deposits are treated like the substrate, the modelled deposition is 55%. Deposition measurements at the shadowed area around injectors can be well explained by assuming negligible re-erosion but similar sticking behaviour there as on plasma-wetted surfaces.
Original language | English |
---|---|
Article number | 014021 |
Journal | Physica Scripta |
Issue number | T138 |
DOIs | |
Publication status | Published - 2009 |
MoE publication type | A1 Journal article-refereed |