Evaluation of protective coatings for SOFC interconnects

J. Tallgren, M. Bianco, O. Himanen, O. Thomann, J. Kiviaho, J. Van Herle

Research output: Contribution to journalArticleScientificpeer-review

8 Citations (Scopus)


Chromium poisoning is a widely recognized degradation process in solid oxide fuel cells (SOFC). Stainless steel interconnect plates, in direct contact with the cathode, have been identified as the major chromium source, raising a need for electrically conducting protective coatings for the interconnects. This work evaluates four different manganese-cobalt protective coatings manufactured on thin steel foils, made by three commercial companies and a research centre. Area specific resistance, coating microstructure, and chromium retention are compared. Measurements were done in a humid atmosphere over 1000 hours at 700 °C. An innovative measurement setup was used, in which the coated steel samples are stacked adjacent to thin palladium foils with a screen-printed lanthanum strontium cobalt layer, replicating an SOFC cathode. As a conclusion, TeerCoating Ltd's and Turbocoating S.p. A's coatings performed similar to the Sandvik Material Technology's cerium-cobalt reference coating, and could be employed as such in SOFC applications.
Original languageEnglish
Pages (from-to)1597-1608
JournalECS Transactions
Issue number1
Publication statusPublished - 2015
MoE publication typeA1 Journal article-refereed


  • cathodes
  • chromium
  • cobalt
  • manganese
  • fuel cells
  • protective coatings
  • stainless steel
  • area-specific resistances
  • chromium poisoning
  • degradation process

Fingerprint Dive into the research topics of 'Evaluation of protective coatings for SOFC interconnects'. Together they form a unique fingerprint.

Cite this