Evaluation of the effect of metallurgical variables on materials behaviour and reference curves

Kari Törrönen, Timo Saario, Kim Wallin, Jarl Forsten

Research output: Contribution to journalArticleScientificpeer-review

4 Citations (Scopus)

Abstract

An integral part of the safety assessment of nuclear pressure vessels and piping is the quantitative estimation of defect growth in both a stable and an unstable manner during service. This estimation is essential for determining whether any defect detected during inspection should be repaired or whether the size of the defect even after its expected growth is small enough to leave the integrity of the vessel unaffected.

The most important stable defect growth mechanism is that of environmentally assisted cyclic crack growth. Recent results indicate that it is markedly affected by sulphur content and/or manganese sulphide morphology and distribution. This implies that an essential improvement in component safety has been gained by currently applied steelmaking practices, which result in extra low sulphur content, generally below 0·010 wt.%, and in the round shape and small size of inclusions through, e.g. calcium treatment, hence considerably reducing the effect of the environment on crack growth rate. This further implies that the ASME Section XI reference curves for environmentally accelerated cyclic crack growth are conservative for steels produced by current steelmaking practices.

The ASME Section XI applies predominantly linear elastic fracture mechanics to assess the effects of cracks on the integrity of nuclear power plant components. Unstable linear elastic fracture often propagates by a cleavage mechanism. The cleavage fracture process has recently been shown to be of a statistical nature in both ferritic and bainitic steels. The carbide size distribution plays a dominant role in controlling the fracture toughness of these steels. A cleavage fracture model has been developed, by which both the expectance value and the probability limits of the fracture toughness,

, can be predicted. The probability limits given by the model are shown to be consistent with the experimental observations. The application of the model to the data on which the ASME Section XI reference fracture toughness curve is based indicates that the reference curve is slightly unconservative.
Original languageEnglish
Pages (from-to)251 - 269
Number of pages19
JournalInternational Journal of Pressure Vessels and Piping
Volume15
Issue number4
DOIs
Publication statusPublished - 1984
MoE publication typeNot Eligible

Fingerprint

Steel
Fracture toughness
Crack propagation
Defects
Steelmaking
Sulfur
Pressure vessels
Fracture mechanics
Nuclear power plants
Manganese
Carbides
Calcium
Inspection
Cracks

Cite this

@article{1629cee806ec46609b63b7ae53256c31,
title = "Evaluation of the effect of metallurgical variables on materials behaviour and reference curves",
abstract = "An integral part of the safety assessment of nuclear pressure vessels and piping is the quantitative estimation of defect growth in both a stable and an unstable manner during service. This estimation is essential for determining whether any defect detected during inspection should be repaired or whether the size of the defect even after its expected growth is small enough to leave the integrity of the vessel unaffected.The most important stable defect growth mechanism is that of environmentally assisted cyclic crack growth. Recent results indicate that it is markedly affected by sulphur content and/or manganese sulphide morphology and distribution. This implies that an essential improvement in component safety has been gained by currently applied steelmaking practices, which result in extra low sulphur content, generally below 0·010 wt.{\%}, and in the round shape and small size of inclusions through, e.g. calcium treatment, hence considerably reducing the effect of the environment on crack growth rate. This further implies that the ASME Section XI reference curves for environmentally accelerated cyclic crack growth are conservative for steels produced by current steelmaking practices.The ASME Section XI applies predominantly linear elastic fracture mechanics to assess the effects of cracks on the integrity of nuclear power plant components. Unstable linear elastic fracture often propagates by a cleavage mechanism. The cleavage fracture process has recently been shown to be of a statistical nature in both ferritic and bainitic steels. The carbide size distribution plays a dominant role in controlling the fracture toughness of these steels. A cleavage fracture model has been developed, by which both the expectance value and the probability limits of the fracture toughness, , can be predicted. The probability limits given by the model are shown to be consistent with the experimental observations. The application of the model to the data on which the ASME Section XI reference fracture toughness curve is based indicates that the reference curve is slightly unconservative.",
author = "Kari T{\"o}rr{\"o}nen and Timo Saario and Kim Wallin and Jarl Forsten",
year = "1984",
doi = "10.1016/0308-0161(84)90011-5",
language = "English",
volume = "15",
pages = "251 -- 269",
journal = "International Journal of Pressure Vessels and Piping",
issn = "0308-0161",
publisher = "Elsevier",
number = "4",

}

Evaluation of the effect of metallurgical variables on materials behaviour and reference curves. / Törrönen, Kari; Saario, Timo; Wallin, Kim; Forsten, Jarl.

In: International Journal of Pressure Vessels and Piping, Vol. 15, No. 4, 1984, p. 251 - 269.

Research output: Contribution to journalArticleScientificpeer-review

TY - JOUR

T1 - Evaluation of the effect of metallurgical variables on materials behaviour and reference curves

AU - Törrönen, Kari

AU - Saario, Timo

AU - Wallin, Kim

AU - Forsten, Jarl

PY - 1984

Y1 - 1984

N2 - An integral part of the safety assessment of nuclear pressure vessels and piping is the quantitative estimation of defect growth in both a stable and an unstable manner during service. This estimation is essential for determining whether any defect detected during inspection should be repaired or whether the size of the defect even after its expected growth is small enough to leave the integrity of the vessel unaffected.The most important stable defect growth mechanism is that of environmentally assisted cyclic crack growth. Recent results indicate that it is markedly affected by sulphur content and/or manganese sulphide morphology and distribution. This implies that an essential improvement in component safety has been gained by currently applied steelmaking practices, which result in extra low sulphur content, generally below 0·010 wt.%, and in the round shape and small size of inclusions through, e.g. calcium treatment, hence considerably reducing the effect of the environment on crack growth rate. This further implies that the ASME Section XI reference curves for environmentally accelerated cyclic crack growth are conservative for steels produced by current steelmaking practices.The ASME Section XI applies predominantly linear elastic fracture mechanics to assess the effects of cracks on the integrity of nuclear power plant components. Unstable linear elastic fracture often propagates by a cleavage mechanism. The cleavage fracture process has recently been shown to be of a statistical nature in both ferritic and bainitic steels. The carbide size distribution plays a dominant role in controlling the fracture toughness of these steels. A cleavage fracture model has been developed, by which both the expectance value and the probability limits of the fracture toughness, , can be predicted. The probability limits given by the model are shown to be consistent with the experimental observations. The application of the model to the data on which the ASME Section XI reference fracture toughness curve is based indicates that the reference curve is slightly unconservative.

AB - An integral part of the safety assessment of nuclear pressure vessels and piping is the quantitative estimation of defect growth in both a stable and an unstable manner during service. This estimation is essential for determining whether any defect detected during inspection should be repaired or whether the size of the defect even after its expected growth is small enough to leave the integrity of the vessel unaffected.The most important stable defect growth mechanism is that of environmentally assisted cyclic crack growth. Recent results indicate that it is markedly affected by sulphur content and/or manganese sulphide morphology and distribution. This implies that an essential improvement in component safety has been gained by currently applied steelmaking practices, which result in extra low sulphur content, generally below 0·010 wt.%, and in the round shape and small size of inclusions through, e.g. calcium treatment, hence considerably reducing the effect of the environment on crack growth rate. This further implies that the ASME Section XI reference curves for environmentally accelerated cyclic crack growth are conservative for steels produced by current steelmaking practices.The ASME Section XI applies predominantly linear elastic fracture mechanics to assess the effects of cracks on the integrity of nuclear power plant components. Unstable linear elastic fracture often propagates by a cleavage mechanism. The cleavage fracture process has recently been shown to be of a statistical nature in both ferritic and bainitic steels. The carbide size distribution plays a dominant role in controlling the fracture toughness of these steels. A cleavage fracture model has been developed, by which both the expectance value and the probability limits of the fracture toughness, , can be predicted. The probability limits given by the model are shown to be consistent with the experimental observations. The application of the model to the data on which the ASME Section XI reference fracture toughness curve is based indicates that the reference curve is slightly unconservative.

U2 - 10.1016/0308-0161(84)90011-5

DO - 10.1016/0308-0161(84)90011-5

M3 - Article

VL - 15

SP - 251

EP - 269

JO - International Journal of Pressure Vessels and Piping

JF - International Journal of Pressure Vessels and Piping

SN - 0308-0161

IS - 4

ER -